Bioengineering (Basel)
September 2022
The vascular smooth muscle is vital for regulating blood pressure and maintaining cardiovascular health, and the resident smooth muscle cells (SMCs) in blood vessel walls rely on specific mechanical and biochemical signals to carry out these functions. Any slight change in their surrounding environment causes swift changes in their phenotype and secretory profile, leading to changes in the structure and functionality of vessel walls that cause pathological conditions. To adequately treat vascular diseases, it is essential to understand how SMCs crosstalk with their surrounding extracellular matrix (ECM).
View Article and Find Full Text PDFThis work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid) (PMAA) and upper critical solution temperature block copolymer micelles (UCSTMs) composed of poly(acrylamide-co-acrylonitrile) P(AAm-co-AN) cores and polyvinylpyrrolidone (PVP) coronae. UCSTMs had a hydrated diameter of ∼380 nm with a transition temperature between 45 and 50 °C, regardless of solution pH.
View Article and Find Full Text PDFThe surface-enhanced activities of size- and shape-controlled gold nanoparticles (AuNPs) with superior chemical stability were investigated to explore a possible development of a simple and non-destructive spectroscopic method to help the regulatory agency's analytical services for rapid detection and characterization of selected antimicrobials in animal feeds. Feed samples spiked at different concentration ranges of antimicrobials were evaluated using AuNPs as a surface-enhanced Raman spectroscopy (SERS) agent. The collected SERS spectra were mathematically preprocessed for further analysis.
View Article and Find Full Text PDF