Data-driven approaches have achieved great success in various medical image analysis tasks. However, fully-supervised data-driven approaches require unprecedentedly large amounts of labeled data and often suffer from poor generalization to unseen new data due to domain shifts. Various unsupervised domain adaptation (UDA) methods have been actively explored to solve these problems.
View Article and Find Full Text PDFObjectives: This preclinical study was devised to investigate potential cellular toxicity in human neurons induced by gadolinium-based contrast agents (GBCAs) used for contrast-enhanced magnetic resonance imaging (MRI). Neurons modeling a subset of those in the basal ganglia were tested, because the basal ganglia region is 1 of 2 brain regions that displays the greatest T1-dependent signal hyperintensity changes.
Methods: Eight GBCAs were tested.
Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in air sac budding.
View Article and Find Full Text PDFBackground: Parasympathetic signaling has been inferred to regulate epithelial branching as well as organ regeneration and tumor development. However, the relative contribution of local nerve contact versus secreted signals remains unclear. Here, we show a conserved (vertebrates to invertebrates) requirement for intact local nerves in airway branching, persisting even when cholinergic neurotransmission is blocked.
View Article and Find Full Text PDFTime-lapse or longitudinal fluorescence microscopy is broadly used in cell biology. However, current available time-lapse fluorescence microscopy systems are bulky and costly. The limited field-of-view (FOV) associated with the microscope objective necessitates mechanical scanning if a larger FOV is required.
View Article and Find Full Text PDFWe describe the development of transgenic quail that express various fluorescent proteins in targeted manners and their use as a model system that integrates advanced imaging approaches with conventional and emerging molecular genetics technologies. We also review the progression and complications of past fate mapping techniques that led us to generate transgenic quail, which permit dynamic imaging of amniote embryogenesis with unprecedented subcellular resolution.
View Article and Find Full Text PDF