Model organisms such as are powerful tools to study the genetic basis of sleep. Previously, we identified the genes and using selective breeding for long and short sleep duration in an outbred population of . is a transcription factor that is part of the epidermal growth factor receptor signaling pathway, while is involved in proline and arginine metabolism.
View Article and Find Full Text PDFSandhoff disease, a lysosomal storage disorder, is caused by pathogenic variants in the HEXB gene, resulting in the loss of β-hexosaminidase activity and accumulation of sphingolipids including GM2 ganglioside. This accumulation occurs primarily in neurons, and leads to progressive neurodegeneration through a largely unknown process. Lysosomal storage diseases often exhibit dysfunctional mTOR signaling, a pathway crucial for proper neuronal development and function.
View Article and Find Full Text PDFBackground: Calcium (Ca) uptake by mitochondria occurs via the mitochondrial Ca uniporter. Mitochondrial Ca uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown.
View Article and Find Full Text PDFErythropoietin (EPO) acts primarily in regulating red blood cell production mediated by high EPO receptor (EPOR) expression in erythroid progenitor cells. EPO activity in non-erythroid tissue is evident in mice with EPOR restricted to erythroid tissues (ΔEPORE) that become obese, glucose-intolerant, and insulin-resistant. In animal models, nitric oxide synthase (NOS) contributes to EPO activities including erythropoiesis, neuroprotection, and cardioprotection against ischemia-reperfusion injury.
View Article and Find Full Text PDFPrevious studies of natural variants in implicated the Wnt signaling receptor in sleep. Given that the Wnt signaling pathway is highly conserved across species, we hypothesized that (), the murine homolog of , would also have a role in sleep. Using a CRISPR transgenic approach, we removed most of the coding region from C57BL/6N mice.
View Article and Find Full Text PDFMitochondrial calcium concentration ([Ca ] ) plays an essential role in bioenergetics, and loss of [Ca ] homeostasis can trigger diseases and cell death in numerous cell types. Ca uptake into mitochondria occurs via the mitochondrial Ca uniporter (MCU), which is regulated by three mitochondrial Ca uptake (MICU) proteins localized in the intermembrane space, MICU1, 2, and 3. We generated a mouse model of systemic MICU3 ablation and examined its physiological role in skeletal muscle.
View Article and Find Full Text PDFUnderstanding how skeletal muscle fiber proportions are regulated is vital to understanding muscle function. Oxidative and glycolytic skeletal muscle fibers differ in their contractile ability, mitochondrial activity, and metabolic properties. Fiber-type proportions vary in normal physiology and disease states, although the underlying mechanisms are unclear.
View Article and Find Full Text PDFThe effect of cytokines on non-traditional immunological targets under conditions of chronic inflammation is an ongoing subject of study. Fatigue is a symptom often associated with autoimmune diseases. Chronic inflammatory response and activated cell-mediated immunity are associated with cardiovascular myopathies which can be driven by muscle weakness and fatigue.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes injury to multiple organ systems, including the brain. SARS-CoV-2's neuropathological mechanisms may include systemic inflammation and hypoxia, as well as direct cell damage resulting from viral infections of neurons and glia. How the virus directly causes injury to brain cells, acutely and over the long term, is not well understood.
View Article and Find Full Text PDFArginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does deficiency. In this study, -KO and -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- .
View Article and Find Full Text PDFAims: Patients with ( ) deficiency exhibit stress-induced childhood-onset neurodegeneration with ataxia and seizures (CONDSIAS). ARH3 degrades protein-linked poly(ADP- ribose) (PAR) synthesized by poly(ADP-ribose)polymerase (PARP)-1 during oxidative stress, leading to cleavage of the ADP-ribose linked to protein. deficiency leads to excess accumulation of PAR, resulting in PAR-dependent cell death or parthanatos.
View Article and Find Full Text PDFADP-ribosylation is a reversible reaction with ADP-ribosyltransferases catalyzing the forward reaction and ADP-ribose-acceptor hydrolases (ARHs) hydrolyzing the ADP-ribose acceptor bond. ARH2 is a member of the 39-kDa ARH family (ARH1-3), which is expressed in heart and skeletal muscle. ARH2 failed to exhibit any in vitro enzymatic activity.
View Article and Find Full Text PDFCardiomyopathy is a primary cause of death in Friedreich ataxia (FRDA) patients with defective iron-sulfur cluster (ISC) biogenesis due to loss of functional frataxin and in rare patients with functional loss of other ISC biogenesis factors. The mechanistic target of rapamycin (mTOR) and AKT signaling cascades that coordinate eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors, are crucial regulators of cardiovascular growth and homeostasis. We observed increased phosphorylation of AKT and dysregulation of multiple downstream effectors of mTORC1, including S6K1, S6, ULK1 and 4EBP1, in a cardiac/skeletal muscle specific FRDA conditional knockout (cKO) mouse model and in human cell lines depleted of ISC biogenesis factors.
View Article and Find Full Text PDFBAZ1B is one of several genes deleted in Williams-Beuren Syndrome (WBS), a complex, multisystem genetic condition that occurs in ~1 in 8000 live births. Also known as Williams Syndrome Transcription Factor (WSTF), BAZ1B is thought to be essential for neural crest migration. To evaluate the impact of Baz1b loss of function, we evaluated the "knockout first" allele of Baz1b .
View Article and Find Full Text PDFMitochondrial stress triggers a response in the cell's mitochondria and nucleus, but how these stress responses are coordinated in vivo is poorly understood. Here, we characterize a family with myopathy caused by a dominant p.G58R mutation in the mitochondrial protein CHCHD10.
View Article and Find Full Text PDFBackground: Williams Beuren syndrome (WBS) is a recurrent microdeletion disorder that removes one copy of elastin (), resulting in large artery vasculopathy. Early stenosis of the pulmonary vascular tree is common, but few data are available on longer-term implications of the condition.
Methods: Computed tomography (CT) angiogram ( = 11) and echocardiogram ( = 20) were performed in children with WBS aged 3.
While fatty acid metabolism is altered under physiological conditions, alterations can also be maladaptive in diseases such as diabetes and heart failure. Peroxisome Proliferator Activated Receptor α (PPARα) is a transcription factor that regulates fat metabolism but its role in regulating lipid storage in the heart is unclear. The aim of this study is to improve our understanding of how cardiac PPARα regulates cardiac health and lipid accumulation.
View Article and Find Full Text PDFEukaryotic initiation factor 5A (eIF5A) is an essential protein that requires a unique amino acid, hypusine, for its activity. Hypusine is formed exclusively in eIF5A post-translationally via two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase. Each of the genes encoding these proteins, Eif5a, Dhps, and Dohh, is required for mouse embryonic development.
View Article and Find Full Text PDFAims: Prolyl hydroxylation is a post-translational modification that regulates protein stability, turnover, and activity. The proteins that catalyze prolyl hydroxylation belong to the 2-oxoglutarate- and iron-dependent oxygenase family of proteins. 2-oxoglutarate- and iron-dependent oxygenase domain-containing protein 1 (Ogfod1), which hydroxylates a proline in ribosomal protein s23 is a newly described member of this family.
View Article and Find Full Text PDFMaternal loss of imprinting (LOI) at the locus results in biallelic and reduced expression and is associated with Beckwith--Wiedemann syndrome (BWS). We use mouse models for LOI to understand the relative importance of and mis-expression in BWS phenotypes. Here we focus on cardiovascular phenotypes and show that neonatal cardiomegaly is exclusively dependent on increased .
View Article and Find Full Text PDFPurpose: Creatine transporter deficiency (CTD) is a rare X-linked disorder of creatine transport caused by pathogenic variants in SLC6A8 (Xq28). CTD features include developmental delay, seizures, and autism spectrum disorder. This study was designed to investigate CTD cardiac phenotype and sudden death risk.
View Article and Find Full Text PDFPolycythemia and pulmonary hypertension are 2 human diseases for which better therapies are needed. Upregulation of hypoxia-inducible factor-2α (HIF-2α) and its target genes, erythropoietin (EPO) and endothelin-1, causes polycythemia and pulmonary hypertension in patients with Chuvash polycythemia who are homozygous for the R200W mutation in the von Hippel Lindau (VHL) gene and in a murine mouse model of Chuvash polycythemia that bears the same homozygous VhlR200W mutation. Moreover, the aged VhlR200W mice developed pulmonary fibrosis, most likely due to the increased expression of Cxcl-12, another Hif-2α target.
View Article and Find Full Text PDF