Perinatal hypoxia-ischemia (HI) is a major cause of neonatal brain injury, leading to long-term neurological impairments. Medical nutrition can be rapidly implemented in the clinic, making it a viable intervention to improve neurodevelopment after injury. The omega-3 (-3) fatty acids docosahexaenoic acid (DHA, 22:6-3) and eicosapentaenoic acid (EPA, 20:5-3), uridine monophosphate (UMP) and choline have previously been shown in rodents to synergistically enhance brain phospholipids, synaptic components and cognitive performance.
View Article and Find Full Text PDFIntroduction: In phenylketonuria (PKU), a gene mutation in the phenylalanine metabolic pathway causes accumulation of phenylalanine (Phe) in blood and brain. Although early introduction of a Phe-restricted diet can prevent severe symptoms from developing, patients who are diagnosed and treated early still experience deficits in cognitive functioning indicating shortcomings of current treatment. In the search for new and/or additional treatment strategies, a specific nutrient combination (SNC) was postulated to improve brain function in PKU.
View Article and Find Full Text PDFAbnormal development can lead to deficits in adult brain function, a trajectory likely underlying adolescent-onset psychiatric conditions such as schizophrenia. Developmental manipulations yielding adult deficits in rodents provide an opportunity to explore mechanisms involved in a delayed emergence of anomalies driven by developmental alterations. Here we assessed whether oxidative stress during presymptomatic stages causes adult anomalies in rats with a neonatal ventral hippocampal lesion, a developmental rodent model useful for schizophrenia research.
View Article and Find Full Text PDFRationale And Objective: There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens.
View Article and Find Full Text PDFKappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors. Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated aversion are not known. Using in vivo microdialysis in rats and mice, we demonstrate that intra-mPFC administration of the selective KOR agonist U69,593 decreased local dopamine (DA) overflow, while reverse dialysis of the KOR antagonist nor-Binaltorphimine (nor-BNI) enhanced mPFC DA overflow.
View Article and Find Full Text PDFSocial experiences during youth are thought to be critical for proper social and cognitive development. Conversely, social insults during development can cause long-lasting behavioral impairments and increase the vulnerability for psychopathology later in life. To investigate the importance of social experience during the juvenile and early adolescent stage for the development of cognitive control capacities, rats were socially isolated from postnatal day 21 to 42 followed by re-socialization until they reached adulthood.
View Article and Find Full Text PDFNicotine has remarkably diverse effects on the brain. Being the main active compound in tobacco, nicotine can aversively affect brain development. However, it has the ability to act positively by restoring attentional capabilities in smokers.
View Article and Find Full Text PDFThe brain continues to develop during adolescence, and exposure to exogenous substances such as nicotine can exert long-lasting adaptations during this vulnerable period. In order to fully understand how nicotine affects the adolescent brain it is important to understand normal adolescent brain development. This review summarizes human and animal data on brain development, with emphasis on the prefrontal cortex, for its important function in executive control over behavior.
View Article and Find Full Text PDFAdolescence is a critical developmental period during which most adult smokers initiate their habit. Adolescents are more vulnerable than adults to nicotine's long-term effects on addictive and cognitive behavior. We investigated whether adolescent nicotine exposure in rats modifies expression of nicotinic acetylcholine receptors (nAChRs) in medial prefrontal cortex (mPFC) in the short and/or long term, and whether this has functional consequences.
View Article and Find Full Text PDFTobacco smoking and nicotine exposure during adolescence interfere with prefrontal cortex (PFC) development and lead to cognitive impairments in later life. The molecular and cellular underpinnings of these consequences remain elusive. We found that adolescent nicotine exposure induced lasting attentional disturbances and reduced mGluR2 protein and function on presynaptic terminals of PFC glutamatergic synapses.
View Article and Find Full Text PDFA neuropsychological hallmark of attention deficit/hyperactivity disorder (ADHD) is the reduced ability to tolerate delay of reinforcement, leading to impulsive choice. Genetic association studies have implicated several genes involved in dopaminergic neurotransmission in ADHD. In this study, we investigated whether differences in the expression level of these dopamine-related genes of rats predict the individual level of impulsive choice.
View Article and Find Full Text PDFAdolescence is a developmental period, during which the brain and particularly medial prefrontal cortical (mPFC) regions thereof have not fully matured. Because epidemiological data have suggested that adolescent nicotine use may result in disturbances in cognitive function in adulthood, we investigated the long-term effects of adolescent nicotine exposure in rats. Male Wistar rats were exposed to either nicotine (three times daily, 0.
View Article and Find Full Text PDF