Publications by authors named "Danielle Raats"

Background: The formation of lung metastasis as part of the progression of colon cancer is a poorly understood process. Theoretically, liver metastases could seed lung metastases.

Methods: To assess the contribution of the liver lymphatic vasculature to metastatic spread to the lungs, we generated murine liver-metastasis-derived organoids overexpressing vascular endothelial growth factor (VEGF)-C.

View Article and Find Full Text PDF

Colorectal cancer metastasizes predominantly to the liver but also to the lungs and the peritoneum. The presence of extra-hepatic metastases limits curative (surgical) treatment options and is associated with very poor survival. The mechanisms governing multi-organ metastasis formation are incompletely understood.

View Article and Find Full Text PDF

Background: Bladder cancer is one of the most common cancer types worldwide. Generally, research relies on invasive sampling strategies.

Methods: Here, we generate bladder cancer organoids directly from urine (urinoids).

View Article and Find Full Text PDF

Purpose: Muscle-wasting and treatment-related toxicities negatively impact prognosis of colorectal cancer (CRC) patients. Specific nutritional composition might support skeletal muscle and enhance treatment support. In this study we assess the effect of nutrients EPA, DHA, L-leucine and vitamin D3, as single nutrients or in combination on chemotherapy-treated C2C12-myotubes, and specific CRC-tumor cells.

View Article and Find Full Text PDF

Background: Peritoneal metastases (PM) in colorectal cancer (CRC) are associated with therapy resistance and poor survival. Oxaliplatin monotherapy is widely applied in the intraperitoneal treatment of PM, but fails to yield clinical benefit. We aimed to identify the mechanism(s) underlying PM resistance to oxaliplatin and to develop strategies overcoming such resistance.

View Article and Find Full Text PDF

DNA mismatch repair deficiency (dMMR) in metastatic colorectal cancer (mCRC) is associated with poor survival and a poor response to systemic treatment. However, it is unclear whether dMMR results in a tumor cell-intrinsic state of treatment resistance, or whether alternative mechanisms play a role. To address this, we generated a cohort of MMR-proficient and -deficient Patient-Derived Organoids (PDOs) and tested their response to commonly used drugs in the treatment of mCRC, including 5-fluorouracil (5-FU), oxaliplatin, SN-38, binimetinib, encorafenib, and cetuximab.

View Article and Find Full Text PDF

Background: Skeletal muscle wasting and fatigue are commonly observed in cancer patients receiving chemotherapy and associated with reduced treatment outcome and quality of life. Nutritional support may mitigate these side effects, but potential interference with chemotherapy efficacy could be of concern. Here, we investigated the effects of an ω-3 polyunsaturated fatty acid (eicosapentaenoic acid and docosahexaenoic acid), leucine-enriched, high-protein (100% whey), additional vitamin D, and prebiotic fibres 'specific nutritional composition' (SNC) and chemotherapy on state-of-the-art tumour organoids and muscle cells and studied muscle function, physical activity, systemic inflammation, and chemotherapy efficacy in a mouse model of aggressive colorectal cancer (CRC).

View Article and Find Full Text PDF

A sophisticated network of BCL-2 family proteins regulates the mitochondria-associated (intrinsic) apoptosis pathway. Antiapoptotic members such as BCL-XL or MCL-1 safeguard the outer mitochondrial membrane and prevent accidental cell death in a functionally redundant and/or compensatory manner. However, BCL-XL/MCL-1-mediated "dual apoptosis protection" also impairs response of cancer cells to chemotherapy.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) function as second messengers in signal transduction, but high ROS levels can also cause cell death. MTH1 dephosphorylates oxidized nucleotides, thereby preventing their incorporation into DNA and protecting tumour cells from oxidative DNA damage. Inhibitors of MTH1 (TH588 and (S)-crizotinib) were shown to reduce cancer cell viability.

View Article and Find Full Text PDF

Primary human colorectal tumors with a high stromal content have an increased capacity to metastasize. Cancer-associated fibroblasts (CAFs) promote metastasis, but the contribution of other stromal cell types is unclear. Here we searched for additional stromal cell types that contribute to aggressive tumor cell behavior.

View Article and Find Full Text PDF

CD95 is best known for its ability to induce apoptosis via a well-characterized pathway involving caspase-mediated proteolytic events. However, in apoptosis-resistant cell lines of diverse cancer types stimulation of CD95 primarily has pro-tumorigenic effects that affect many of the hallmarks of cancer. For instance, in colon cancer cells with a mutant KRAS gene CD95 primarily promotes invasion and metastasis.

View Article and Find Full Text PDF

Homeostasis of the continuously self-renewing intestinal tract involves cell proliferation, migration, differentiation along the crypt-villus-axis and shedding of cells into the gut lumen. CD95-ligand (FAS-ligand, CD95L) is a cytokine that is known for its capacity to induce apoptosis by binding its cognate receptor, CD95 (Fas). More recently, it was discovered that CD95L can also induce other cellular responses, such as proliferation, differentiation and cell migration.

View Article and Find Full Text PDF

Background & Aims: Colon tumors contain a fraction of undifferentiated stem cell-like cancer cells with high tumorigenic potential. Little is known about the signals that maintain these stem-like cells. We investigated whether differentiated tumor cells provide support.

View Article and Find Full Text PDF

In epithelial tumors, the platelet-derived growth factor receptor B (PDGFRB) is mainly expressed by stromal cells of mesenchymal origin. Tumor cells may also acquire PDGFRB expression following epithelial-to-mesenchymal transition (EMT), which occurs during metastasis formation. Little is known about PDGFRB signaling in colorectal tumor cells.

View Article and Find Full Text PDF

Cell dynamics in subcutaneous and breast tumors can be studied through conventional imaging windows with intravital microscopy. By contrast, visualization of the formation of metastasis has been hampered by the lack of long-term imaging windows for metastasis-prone organs, such as the liver. We developed an abdominal imaging window (AIW) to visualize distinct biological processes in the spleen, kidney, small intestine, pancreas, and liver.

View Article and Find Full Text PDF

The death receptor CD95 promotes apoptosis through well-defined signalling pathways. In colorectal cancer cells, CD95 primarily stimulates migration and invasion through pathways that are incompletely understood. Here, we identify a new CD95-activated tyrosine kinase pathway that is essential for CD95-stimulated tumour cell invasion.

View Article and Find Full Text PDF

Background: The response of colorectal tumours to chemotherapy is highly variable. Preclinical work has shown that the Kirsten ras (KRAS) oncogene sensitizes colorectal tumour cells to oxaliplatin and capecitabine in a wild-type tumour suppressor p53 (TP53)-dependent manner. Therefore, whether or not the combined mutation status of KRAS and TP53 could predict response to chemotherapy in metastatic colorectal cancer was tested.

View Article and Find Full Text PDF

Background: Oxaliplatin is frequently used in the treatment of metastatic colorectal cancer (CRC). Our previous work shows that oxaliplatin induces the pro-apoptotic protein Noxa in CRC cells. The Bcl2-inhibitor ABT-737 is particularly effective in cells with high Noxa levels.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR)-targeting therapeutics have shown efficacy in the treatment of colorectal cancer patients. Clinical studies have revealed that activating mutations in the KRAS protooncogene predict resistance to EGFR-targeted therapy. However, the causality between mutant KRAS and resistance to EGFR inhibition has so far not been demonstrated.

View Article and Find Full Text PDF

Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

View Article and Find Full Text PDF

Background & Aims: Death receptors expressed on tumor cells can prevent metastasis formation by inducing apoptosis, but they also can promote migration and invasion. The determinants of death receptor signaling output are poorly defined. Here we investigated the role of oncogenic K-Ras in determining death receptor function and metastatic potential.

View Article and Find Full Text PDF

The combination of inhaled corticosteroids and long-acting beta2-adrenoceptor agonists is increasingly used in chronic obstructive pulmonary disease (COPD). Recently, we have demonstrated that combination of salmeterol and fluticasone propionate (FP) additionally suppress the production of IL-8 by human monocyte. In this study, the molecular mechanism behind the effectiveness of this combination therapy is investigated in human neutrophils.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease is a major health problem and will become the third largest cause of death in the world by 2020. It is currently believed that an exaggerated inflammatory response to inhaled irritants, in particular, cigarette smoke (CS), causes the progressive airflow limitation, in which macrophages and neutrophils are attracted by chemokines, leading to oxidative stress, emphysema, small airways fibrosis, and mucus hypersecretion. Smoking is also associated with an increase in mast cell numbers in bronchial mucosa.

View Article and Find Full Text PDF