Publications by authors named "Danielle R Ellis"

To avoid predation, prey initiate anti-predator defenses such as altered behavior, physiology and/or morphology. Prey trait changes in response to perceived predation risk can influence several aspects of prey biology that collectively contribute to individual success and thus population growth. However, studies often focus on single trait changes in a discrete life stage or morphotype.

View Article and Find Full Text PDF

Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart.

View Article and Find Full Text PDF

Pteris vittata sporophytes hyperaccumulate arsenic to 1% to 2% of their dry weight. Like the sporophyte, the gametophyte was found to reduce arsenate [As(V)] to arsenite [As(III)] and store arsenic as free As(III). Here, we report the isolation of an arsenate reductase gene (PvACR2) from gametophytes that can suppress the arsenate sensitivity and arsenic hyperaccumulation phenotypes of yeast (Saccharomyces cerevisiae) lacking the arsenate reductase gene ScACR2.

View Article and Find Full Text PDF

Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity.

View Article and Find Full Text PDF

To broaden our understanding of micronutrient metal transport in plants, we have identified cDNAs for six new metal transporters in the model legume Medicago truncatula. All of the predicted proteins have high similarity to the ZIP protein family, and have been designated MtZIP1, MtZIP3, MtZIP4, MtZIP5, MtZIP6, and MtZIP7. The six predicted proteins ranged from 350 to 372 amino acids in length; sequence analysis revealed that all proteins contained eight transmembrane domains and the highly conserved ZIP signature motif.

View Article and Find Full Text PDF

Background: It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains up to 0.

View Article and Find Full Text PDF

Selenium is an essential nutrient for animals, microorganisms and some other eukaryotes. Although selenium has not been demonstrated to be essential in vascular plants, the ability of some plants to accumulate and transform selenium into bioactive compounds has important implications for human nutrition and health, and for the environment. Selenium-accumulating plants provide unique tools to help us understand selenium metabolism.

View Article and Find Full Text PDF