The SARS-CoV-2 pandemic showed limitations in human outbreak testing. Veterinary diagnostic laboratories (VDLs) possess capabilities to bolster emergency test capacity. Surveys from 26 participating VDLs found human SARS-CoV-2 testing was mutually beneficial, including One Health benefits.
View Article and Find Full Text PDFObjective: To investigate the prevalence and seropositivity of SARS-CoV-2 in companion and exotic animals in a veterinary healthcare system.
Sample: A total of 341 animals were sampled by a combination of oral and nasal swabs. Serum from whole blood was collected from a subset of animals (86 canines, 25 felines, and 6 exotic animals).
A 5-year-old female Beagle Dog was euthanized following ten days of inappetence, lethargy, and pain in the left cervical region that was not responsive to steroids or antibiotics. At necropsy, there were multiple soft dark red to tan nodules throughout all lung lobes, abundant purulent subdural exudate over the right temporal lobe of the brain, and minimally enlarged submandibular and tracheobronchial lymph nodes. Impression smear of the subdural pus and histologic section of the lung and meninges demonstrated small aggregates of rod-shaped to filamentous bacteria often surrounded by Splendori-Hoeppli material.
View Article and Find Full Text PDFAn animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes.
View Article and Find Full Text PDFChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer.
View Article and Find Full Text PDFHuman enterovirus D68 (EV-D68) is a globally reemerging respiratory pathogen that is associated with the development of acute flaccid myelitis (AFM) in children. Currently, there are no approved vaccines or treatments for EV-D68 infection, and there is a paucity of data related to the virus and host-specific factors that predict disease severity and progression to the neurologic syndrome. EV-D68 infection of various animal models has served as an important platform for characterization and comparison of disease pathogenesis between historic and contemporary isolates.
View Article and Find Full Text PDFChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use.
View Article and Find Full Text PDFPre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome.
View Article and Find Full Text PDFThe emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.
View Article and Find Full Text PDFWe investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.
View Article and Find Full Text PDFThe emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors that affect observed pathogenicity and transmissibility data in the human population. Here, we studied the pathogenicity of variants of concern (VOC) B.
View Article and Find Full Text PDFPre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome.
View Article and Find Full Text PDFMiddle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE).
View Article and Find Full Text PDFWe investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.
View Article and Find Full Text PDFWithin the past two decades, three zoonotic betacoronaviruses have been associated with outbreaks causing severe respiratory disease in humans. Of these, Middle East respiratory s yndrome coronavirus (MERS-CoV) is the only zoonotic coronavirus that is known to consistently result in frequent zoonotic spillover events from the proximate reservoir host-the dromedary camel. A comprehensive understanding of infection in dromedaries is critical to informing public health recommendations and implementing intervention strategies to mitigate spillover events.
View Article and Find Full Text PDFIn 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged. To date, more than 2300 cases have been reported, with an approximate case fatality rate of 35%. Epidemiological investigations identified dromedary camels as the source of MERS-CoV zoonotic transmission and evidence of MERS-CoV circulation has been observed throughout the original range of distribution.
View Article and Find Full Text PDFMERS-CoV is present in dromedary camels throughout the Middle East and Africa. Dromedary camels are the primary zoonotic reservoir for human infections. Interruption of the zoonotic transmission chain from camels to humans, therefore, may be an effective strategy to control the ongoing MERS-CoV outbreak.
View Article and Find Full Text PDFThe Middle East respiratory syndrome coronavirus (MERS-CoV) was first recognized in 2012 and can cause severe disease in infected humans. Dromedary camels are the reservoir for the virus, although, other than nasal discharge, these animals do not display any overt clinical disease. Data from in vitro experiments suggest that other livestock such as sheep, goats, and horses might also contribute to viral transmission, although field data has not identified any seropositive animals.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus is a recently emerged pathogen associated with severe human disease. Zoonotic spillover from camels appears to play a major role in transmission. Because of logistic difficulties in working with dromedaries in containment, a more manageable animal model would be desirable.
View Article and Find Full Text PDFThe emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV.
View Article and Find Full Text PDFFrancisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia) in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A) and holarctica (type B) which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50-100 organisms.
View Article and Find Full Text PDFThe economic impact of non-lethal human and equine West Nile virus (WNV) disease is substantial, since it is the most common presentation of the infection. Experimental infection with virulent WNV strains in the mouse and hamster models frequently results in severe neural infection and moderate to high mortality, both of which are not representative features of most human and equine infections. We have established a rabbit model for investigating pathogenesis and immune response of non-lethal WNV infection.
View Article and Find Full Text PDFFrancisella tularensis is a highly virulent, zoonotic bacterium that causes significant natural disease and is of concern as an organism for bioterrorism. Serologic testing of wildlife is frequently used to monitor spatial patterns of infection and to quantify exposure. Cottontail rabbits (Sylvilagus spp.
View Article and Find Full Text PDFIn 2012, a novel coronavirus associated with severe respiratory disease in humans emerged in the Middle East. Epidemiologic investigations identified dromedary camels as the likely source of zoonotic transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Here we provide experimental support for camels as a reservoir for MERS-CoV.
View Article and Find Full Text PDFProper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex.
View Article and Find Full Text PDF