RBC transfusion is associated with increased morbidity and mortality in critically ill patients. Endothelial cell necroptosis and subsequent damage-associated molecular pattern (DAMP) release has been identified as a mechanism of injury following RBC transfusion. Mounting evidence implicates the pro-inflammatory pattern recognition receptor, Receptor for Advanced Glycation End Products (RAGE), in initiating cell death programmes such as necroptosis.
View Article and Find Full Text PDFRationale: Potentially hazardous CpG-containing cell-free mitochondrial DNA (cf-mtDNA) is routinely released into the circulation and is associated with morbidity and mortality in critically ill patients. How the body avoids inappropriate innate immune activation by cf-mtDNA remains unknown. Because red blood cells (RBCs) modulate innate immune responses by scavenging chemokines, we hypothesized that RBCs may attenuate CpG-induced lung inflammation through direct scavenging of CpG-containing DNA.
View Article and Find Full Text PDFRed blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process.
View Article and Find Full Text PDFBackground: Receptor interacting protein kinase-3 (RIP3) is a key mediator of necroptosis, a form of regulated cell death recently implicated in murine models of renal ischemia-reperfusion injury and transfusion-associated endothelial injury. The importance of necroptosis in human AKI is unknown. We hypothesized that plasma RIP3 concentrations would be associated with acute kidney injury (AKI) after severe trauma.
View Article and Find Full Text PDFRationale: Red blood cell (RBC) transfusions are associated with increased risk of acute respiratory distress syndrome (ARDS) in the critically ill, yet the mechanisms for enhanced susceptibility to ARDS conferred by RBC transfusions remain unknown.
Objectives: To determine the mechanisms of lung endothelial cell (EC) High Mobility Group Box 1 (HMGB1) release following exposure to RBCs and to determine whether RBC transfusion increases susceptibility to lung inflammation in vivo through release of the danger signal HMGB1.
Methods: In vitro studies examining human lung EC viability and HMGB1 release following exposure to allogenic RBCs were conducted under static conditions and using a microengineered model of RBC perfusion.