During DNA replication in living cells some DNA knots are inadvertently produced by DNA topoisomerases facilitating progression of replication forks. The types of DNA knots formed are conditioned by the 3D organization of replicating DNA molecules. Therefore, by characterizing formed DNA knots it is possible to infer the 3D arrangement of replicating DNA molecules.
View Article and Find Full Text PDFPolar development and cell division in Caulobacter crescentus are controlled and coordinated by multiple signal transduction proteins. divJ encodes a histidine kinase. A null mutation in divJ results in a reduced growth rate, cell filamentation, and mislocalized stalks.
View Article and Find Full Text PDFThe expression of the flagellin proteins in Caulobacter crescentus is regulated by the progression of flagellar assembly both at the transcriptional and post-transcriptional levels. An early basal body structure is required for the transcription of flagellin genes, whereas the ensuing assembly of a hook structure is required for flagellin protein synthesis. Previous experiments have shown that the negative regulatory protein, FlbT, operates this second post-transcriptional checkpoint by associating with the 5' untranslated region (UTR) of the fljK flagellin transcript, inhibiting translation and destabilizing the mRNA.
View Article and Find Full Text PDF