Publications by authors named "Danielle N Gallagher"

Targeted eradication of transformed or otherwise dysregulated cells using monoclonal antibodies (mAb), antibody-drug conjugates (ADC), T cell engagers (TCE), or chimeric antigen receptor (CAR) cells is very effective for hematologic diseases. Unlike the breakthrough progress achieved for B cell malignancies, there is a pressing need to find suitable antigens for myeloid malignancies. CD123, the interleukin-3 (IL-3) receptor alpha-chain, is highly expressed in various hematological malignancies, including acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3' end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) pose a serious hazard for the stability of the genome. CRISPR-Cas9-mediated gene editing intentionally creates a site-specific DSB to modify the genomic sequence, typically from an introduced single-stranded DNA donor. However, unlike typical forms of homologous recombination, single-strand template repair (SSTR) is Rad51-independent.

View Article and Find Full Text PDF

The Rad51/RecA family of recombinases perform a critical function in typical repair of double-strand breaks (DSBs): strand invasion of a resected DSB end into a homologous double-stranded DNA (dsDNA) template sequence to initiate repair. However, repair of a DSB using single stranded DNA (ssDNA) as a template, a common method of CRISPR/Cas9-mediated gene editing, is Rad51-independent. We have analyzed the genetic requirements for these Rad51-independent events in Saccharomyces cerevisiae by creating a DSB with the site-specific HO endonuclease and repairing the DSB with 80-nt single-stranded oligonucleotides (ssODNs), and confirmed these results by Cas9-mediated DSBs in combination with a bacterial retron system that produces ssDNA templates in vivo.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated gene editing may involve nonhomologous end-joining to create various insertion/deletions (indels) or may employ homologous recombination to modify precisely the target DNA sequence. Our understanding of these processes has been guided by earlier studies using other site-specific endonucleases, both in model organisms such as budding yeast and in mammalian cells. We briefly review what has been gleaned from such studies using the HO and I-SceI endonucleases and how these findings guide current gene editing strategies.

View Article and Find Full Text PDF