Publications by authors named "Danielle Mccullough"

Gait adaptation during bipedal walking allows people to adjust their walking patterns to maintain balance, avoid obstacles and avoid injury. Adaptation involves complex processes that function to maintain stability and reduce energy expenditure. However, the processes that influence walking patterns during different points in the adaptation period remain to be investigated.

View Article and Find Full Text PDF

Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity.

View Article and Find Full Text PDF

Amidst the ongoing coronavirus disease 2019 (COVID-19) pandemic, evidence suggests racial and ethnic disparities in COVID-19-related outcomes. Given these disparities, it is important to understand how such patterns may translate to high-risk cohorts, including obstetric patients. A PubMed search was performed to identify studies assessing pregnancy, neonatal, and other health-related complications by race or ethnicity in obstetric patients with COVID-19 infection.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g.

View Article and Find Full Text PDF

We sought to determine the effects of long-term voluntary wheel running on markers of long interspersed nuclear element-1 (L1) in skeletal muscle, liver, and the hippocampus of female rats. In addition, markers of the cGAS-STING DNA-sensing pathway that results in inflammation were interrogated. Female Lewis rats ( = 34) were separated into one of three groups including a 6-mo-old group to serve as a young comparator group (CTL, = 10), a group that had access to a running wheel for voluntary wheel running (EX, = 12), and an age-matched group that did not (SED, = 12).

View Article and Find Full Text PDF

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T laminectomy (SHAM) or laminectomy with severe contusion SCI ( = 20/group).

View Article and Find Full Text PDF

The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action.

View Article and Find Full Text PDF

Pulmonary hypertension is associated with pronounced exercise intolerance (decreased V ċ O max) that can significantly impact quality of life. The cause of exercise intolerance in pulmonary hypertension remains unclear. Mitochondrial supercomplexes are large respiratory assemblies of individual electron transport chain complexes which can promote more efficient respiration.

View Article and Find Full Text PDF

Background: Angiotensin II has been implicated in maladaptive right ventricular (RV) hypertrophy and fibrosis associated with pulmonary hypertension (PH). Natriuretic peptides decrease RV afterload by promoting pulmonary vasodilation and inhibiting vascular remodeling but are degraded by neprilysin. We hypothesized that angiotensin receptor blocker and neprilysin inhibitor, sacubitril/valsartan (Sac/Val, LCZ696), will attenuate PH and improve RV function by targeting both pulmonary vascular and RV remodeling.

View Article and Find Full Text PDF

The long interspersed nuclear element-1 (L1) is a retrotransposon that constitutes 17% of the human genome and is associated with various diseases and aging. Estimates suggest that ~100 L1 copies are capable of copying and pasting into other regions of the genome. Herein, we examined if skeletal muscle L1 markers are affected by aging or an acute bout of cycling exercise in humans.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is a life-saving intervention, yet with prolonged MV (i.e., ≥6 h) there are time-dependent reductions in diaphragm blood flow and an impaired hyperemic response of unknown origin.

View Article and Find Full Text PDF

Physical activity is associated with diminished risk of several cancers, and preclinical studies suggest exercise training may alter tumor cell growth in certain tissue(s) (e.g., adipose).

View Article and Find Full Text PDF

We determined the short- and long-term effects of a ketogenic diet (KD) or ketone salt (KS) supplementation on multi-organ oxidative stress and mitochondrial markers. For short-term feedings, 4 month-old male rats were provided isocaloric amounts of KD ( = 10), standard chow (SC) ( = 10) or SC + KS (~1.2 g/day, = 10).

View Article and Find Full Text PDF

The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation.

View Article and Find Full Text PDF

We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.

View Article and Find Full Text PDF

Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue.

View Article and Find Full Text PDF

Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs).

View Article and Find Full Text PDF

Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite.

View Article and Find Full Text PDF

Purpose: To identify the effect of the benzimidazalone derivative, NS1619, on modulating pulmonary vascular tone in lungs from rats exposed to normoxia (21% FiO2) or chronic hypoxia (10% FiO2) for three weeks.

Methods: Isolated perfused lungs were preconstricted (U46619), and dose-dependent vasodilation to NS1619 was assessed. To elucidate the mechanisms responsible, NS1619 vasodilatory responses were assessed following inhibition of large-conductance Ca(2+)-activated (BKCa; iberiotoxin and paxilline), L-type Ca2+ (nifedipine), K+ (tetraethylammonium), Cl- (niflumic acid), and cation/TRP (lanthanum) channels, as well as nitric oxide synthase (L-NAME).

View Article and Find Full Text PDF

The purpose of this study was to compare acquisition time efficiency and diagnostic agreement of neonatal brain ultrasound (US) scans obtained with a 3-D volume US acquisition protocol and the conventional 2-D acquisition protocol. Ninety-one consecutive premature neonatal brain ultrasound scans were prospectively performed on 59 neonates with the conventional 2-D acquisition protocol. Immediately after the 2-D study, a coronal 3-D ultrasound volume was acquired and later reconstructed into axial and sagittal planes.

View Article and Find Full Text PDF

Background: Previous studies have hypothesized that tumor blood flow may be elevated or reduced during exercise, which could impact the tumor microenvironment. However, to date technical limitations have precluded the measurement of tumor blood flow during exercise. Using an orthotopic preclinical model of prostate cancer, we tested the hypotheses that during exercise tumors would experience 1) diminished vascular resistance, 2) augmented blood flow, 3) increased numbers of perfused vessels, and 4) decreased tissue hypoxia and, furthermore, that the increased perfusion would be associated with diminished vasoconstriction in prostate tumor arterioles.

View Article and Find Full Text PDF

Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand.

View Article and Find Full Text PDF

Regular physical exercise is considered to be an integral component of cancer care strategies. However, the effect of exercise training on tumor microvascular oxygenation, hypoxia, and vascular function, all of which can affect the tumor microenvironment, remains unknown. Using an orthotopic preclinical model of prostate cancer, we tested the hypotheses that, after exercise training, in the tumor, there would be an enhanced microvascular Po2, increased number of patent vessels, and reduced hypoxia.

View Article and Find Full Text PDF