Publications by authors named "Danielle M Paul"

Crosstalk between the actin and microtubule cytoskeletons is important for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear.

View Article and Find Full Text PDF

Actin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease.

View Article and Find Full Text PDF

Microtubules and filamentous (F-) actin engage in complex interactions to drive many cellular processes from subcellular organization to cell division and migration. This is thought to be largely controlled by proteins that interface between the two structurally distinct cytoskeletal components. Here, we use cryo-electron tomography to demonstrate that the microtubule lumen can be occupied by extended segments of F-actin in small molecule-induced, microtubule-based, cellular projections.

View Article and Find Full Text PDF

The technique of electron microscopy (EM) has been fundamental to muscle research since the days of Huxley and Hanson. Direct observation of how proteins in the sarcomere are arranged and visualising the changes that occur upon activation have greatly increased our understanding of function. In the 1980s specimen preparation techniques for biological EM moved away from traditional fixing and staining.

View Article and Find Full Text PDF

The structures of muscle thin filaments reconstituted using skeletal actin and cardiac troponin and tropomyosin have been determined with and without bound Ca using electron microscopy and reference-free single particle analysis. The resulting density maps have been fitted with atomic models of actin, tropomyosin and troponin showing that: (i) the polarity of the troponin complex is consistent with our 2009 findings, with large shape changes in troponin between the two states; (ii) without Ca the tropomyosin pseudo-repeats all lie at almost equivalent positions in the 'blocked' position on actin (over subdomains 1 and 2); (iii) in the active state the tropomyosin pseudo-repeats are all displaced towards subdomains 3 and 4 of actin, but the extent of displacement varies within the regulatory unit depending upon the axial location of the pseudo-repeats with respect to troponin. Individual pseudo-repeats with Ca bound to troponin can be assigned either to the 'closed' state, a partly activated conformation, or the 'M-state', a fully activated conformation which has previously been thought to occur only when myosin heads bind.

View Article and Find Full Text PDF

In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.

View Article and Find Full Text PDF

Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits.

View Article and Find Full Text PDF

We describe a novel set of single particle based procedures for the structural analysis of electron microscope images of muscle thin filaments and other partially decorated actin based filaments. The thin filament comprises actin and the regulatory proteins tropomyosin and troponin in a 7:1:1M ratio. Prior to our work, structure analysis from electron microscope images of the thin filament has largely involved either helical averaging defined by the underlying actin helix or the use of single particle analysis but using a starting model as a reference structure.

View Article and Find Full Text PDF

The troponin complex on the thin filament plays a crucial role in the regulation of muscle contraction. However, the precise location of troponin relative to actin and tropomyosin remains uncertain. We have developed a method of reconstructing thin filaments using single particle analysis that does not impose the helical symmetry of actin and is independent of a starting model.

View Article and Find Full Text PDF