Publications by authors named "Danielle Lejeune"

In eukaryotic cells, transcription coupled nucleotide excision repair (TCR) is believed to be initiated by RNA polymerase II (Pol II) stalled at a lesion in the transcribed strand of a gene. Rad26, the yeast homolog of the human Cockayne syndrome group B (CSB) protein, plays an important role in TCR. Spt4, a transcription elongation factor that forms a complex with Spt5, has been shown to suppress TCR in rad26Delta cells.

View Article and Find Full Text PDF

Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes.

View Article and Find Full Text PDF

Transcription coupled repair (TCR) is a nucleotide excision repair (NER) pathway that is dedicated to repair in the transcribed strand of an active gene. The genome overall NER is called global genomic repair (GGR). Elc1, the yeast homolog of the mammalian elongation factor elongin C, has been shown to be a component of a ubiquitin ligase complex that contains Rad7 and Rad16, two factors that are specifically required for GGR.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same protein superfamily, has been shown to be required for genome-wide NER.

View Article and Find Full Text PDF

There is little understanding of the effect that reactive oxygen metabolites have on cellular behavior during the processes of invasion and metastasis. These oxygen metabolites could interact with a number of targets modulating their function such as enzymes involved in basement membrane dissolution, adhesion molecules involved in motility or receptors involved in proliferation. We investigated the effect of increased scavenging of superoxide anions on the expression of the urokinase receptor (uPAR) in PC-3M human prostate cancer cells.

View Article and Find Full Text PDF