Publications by authors named "Danielle L Edwards"

Orthoflavivirus japonicum (JEV) is the dominant cause of viral encephalitis in the Asian region with 100,000 cases and 25,000 deaths reported annually. The genome is comprised of a single polyprotein that encodes three structural and seven non-structural proteins. We collated a dataset of 349 complete genomes from a number of public databases, and analysed the data for recombination, evolutionary selection and phylogenetic structure.

View Article and Find Full Text PDF

Evolutionary correlations between phenotypic and environmental traits characterize adaptive radiations. However, the lizard genus , one of the most ecologically diverse terrestrial vertebrate radiations on earth, has so far shown limited or mixed evidence of adaptive diversification in phenotype. Restricted use of comprehensive environmental data, incomplete taxonomic representation and not considering phylogenetic uncertainty may have led to contradictory evidence.

View Article and Find Full Text PDF

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands.

View Article and Find Full Text PDF

Color polymorphism-two or more heritable color phenotypes maintained within a single breeding population-is an extreme type of intraspecific diversity widespread across the tree of life. Color polymorphism is hypothesized to be an engine for speciation, where morph loss or divergence between distinct color morphs within a species results in the rapid evolution of new lineages, and thus, color polymorphic lineages are expected to display elevated diversification rates. Multiple species in the lizard family Lacertidae are color polymorphic, making them an ideal group to investigate the evolutionary history of this trait and its influence on macroevolution.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the role of sexual and natural selection in shaping traits is essential in evolutionary ecology, with a focus on male-biased sexual size dimorphism (SSD) linked to male competition.
  • This study focuses on common side-blotched lizards (Uta stansburiana) to demonstrate that environmental factors significantly influence SSD and the diversity of male morphs, challenging traditional views that prioritize social interactions.
  • Findings reveal that environmental variables are stronger predictors of SSD than the number of male morphs, suggesting that smaller males are favored in regions with high seasonality and cold climates.
View Article and Find Full Text PDF
Article Synopsis
  • Global biodiversity loss, largely driven by human activities, is more severe than previously believed due to many undocumented species.
  • Effective conservation relies on accurately identifying species, yet only a small portion of biodiversity has been described.
  • A study on Australian lizards and snakes reveals that 32.4% of assessed species have taxonomic uncertainty, with 24 species identified as needing urgent attention for conservation efforts.
View Article and Find Full Text PDF
Article Synopsis
  • Color polymorphism in the Aegean Wall Lizard challenges traditional evolutionary views by displaying significant variation within a single species, specifically in throat coloration.
  • The study identifies three color morphs (orange, yellow, and white) and highlights that orange males are larger and possess a stronger bite force compared to the other morphs.
  • The research indicates different chemical signaling profiles among the color morphs, particularly between orange and white males, suggesting that these traits interact and influence social behavior and competition.
View Article and Find Full Text PDF

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea).

View Article and Find Full Text PDF

Population genetic theory related to the consequences of rapid population decline is well-developed, but there are very few empirical studies where sampling was conducted before and after a known bottleneck event. Such knowledge is of particular importance for species restoration, given links between genetic diversity and the probability of long-term persistence. To directly evaluate the relationship between current genetic diversity and past demographic events, we collected genome-wide single nucleotide polymorphism data from prebottleneck historical (c.

View Article and Find Full Text PDF

High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences.

View Article and Find Full Text PDF

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation.

View Article and Find Full Text PDF

Empirical population genetic studies generally rely on sampling subsets of the population(s) of interest and of the nuclear or organellar genome targeted, assuming each is representative of the whole. Violations of these assumptions may impact population-level parameter estimation and lead to spurious inferences. Here, we used targeted capture to sequence the full mitochondrial genome from 123 individuals of the Galapagos giant tortoise endemic to Pinzón Island (Chelonoidis duncanensis) sampled at 2 time points pre- and postbottleneck (circa 1906 and 2014) to explicitly assess differences in diversity estimates and demographic reconstructions based on subsets of the mitochondrial genome versus the full sequences and to evaluate potential biases associated with diversity estimates and demographic reconstructions from postbottlenecked samples alone.

View Article and Find Full Text PDF

Species are being lost at an unprecedented rate due to human-driven environmental changes. The cases in which species declared extinct can be revived are rare. However, here we report that a remote volcano in the Galápagos Islands hosts many giant tortoises with high ancestry from a species previously declared as extinct: Chelonoidis elephantopus or the Floreana tortoise.

View Article and Find Full Text PDF

Southwest Australia (SWA) is a global biodiversity hotspot and a centre of diversity and endemism for the Australo-Papuan myobatrachid frogs. Myobatrachus gouldii (the turtle frog) has a highly derived morphology associated with its forward burrowing behaviour, largely subterranean habit, and unusual mode of reproduction. Its sister genera Metacrinia and Arenophryne have restricted distributions in Western Australia with significant phylogeographic structure, leading to the recent description of a new species in the latter.

View Article and Find Full Text PDF

Species diversification often results from divergent evolution of ecological or social signaling traits. Theoretically, a combination of the two may promote speciation, however, empirical examples studying how social signal and ecological divergence might be involved in diversification are rare in general and typically do not consider range overlap as a contributing factor. We show that ecologically distinct lineages within the Australian sand dragon species complex (including Ctenophorus maculatus, Ctenophorus fordi, and Ctenophorus femoralis) have diversified recently, diverging in ecologically relevant and social signaling phenotypic traits as arid habitats expanded and differentiated.

View Article and Find Full Text PDF

The taxonomy of giant Galapagos tortoises (Chelonoidis spp.) is currently based primarily on morphological characters and island of origin. Over the last decade, compelling genetic evidence has accumulated for multiple independent evolutionary lineages, spurring the need for taxonomic revision.

View Article and Find Full Text PDF

Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon.

View Article and Find Full Text PDF

The south-western land division of Western Australia (SWWA), bordering the temperate Southern and Indian Oceans, is the only global biodiversity hotspot recognised in Australia. Renowned for its extraordinary diversity of endemic plants, and for some of the largest and most botanically significant temperate heathlands and woodlands on Earth, SWWA has long fascinated biogeographers. Its flat, highly weathered topography and the apparent absence of major geographic factors usually implicated in biotic diversification have challenged attempts to explain patterns of biogeography and mechanisms of speciation in the region.

View Article and Find Full Text PDF

Statistical species delimitation usually relies on singular data, primarily genetic, for detecting putative species and individual assignment to putative species. Given the variety of speciation mechanisms, singular data may not adequately represent the genetic, morphological and ecological diversity relevant to species delimitation. We describe a methodological framework combining multivariate and clustering techniques that uses genetic, morphological and ecological data to detect and assign individuals to putative species.

View Article and Find Full Text PDF

Tests of the genetic structure of empirical populations typically focus on the correlative relationships between population connectivity and geographic and/or environmental factors in landscape genetics. However, such tests may overlook or misidentify the impact of candidate factors on genetic structure, especially when connectivity patterns differ between past and present populations because of shifting environmental conditions over time. Here we account for the underlying demographic component of population connectivity associated with a temporarily dynamic landscape in tests of the factors structuring population genetic variation in an Australian lizard, Lerista lineopunctulata, from 24 nuclear loci.

View Article and Find Full Text PDF

The Pacific iguanas of the Fijian and Tongan archipelagos are a biogeographic enigma in that their closest relatives are found only in the New World. They currently comprise two genera and four species of extinct and extant taxa. The two extant species, Brachylophus fasciatus from Fiji, Tonga, and Vanuatu and Brachylophus vitiensis from western Fiji, are of considerable conservation concern with B.

View Article and Find Full Text PDF

Within the southwestern Australian biodiversity hotspot, the Shark Bay region displays high levels of plant and animal endemism, particularly in the herpetofauna. The region has been subjected to dramatic climatic fluctuations and has been geologically active from the Late Miocene to the present. The myobatrachid frog Arenophryne rotunda, a Shark Bay endemic, provides an ideal opportunity to examine the relative effects of fluctuating climates and geological activity on the biota of Shark Bay.

View Article and Find Full Text PDF

Southwestern Australia is regarded as a global biodiversity hotspot. The region contains a high number of endemic species, ranging from Gondwanan relicts to much more recently evolved plant and animal species. Myobatrachid frogs are diverse in southwestern Australia, and while we know they have speciated in situ in the southwest, we know little about the temporal and geographical patterning of speciation events.

View Article and Find Full Text PDF