Publications by authors named "Danielle Kian"

American cutaneous leishmaniasis is a zoonotic disease caused by protozoans of the genus Leishmania. The treatment of cutaneous leishmaniasis is unsatisfactory, thus, much research effort has been focused on investigating new compounds with lower collateral effects to the patients and derived from low-cost sources, such as natural products. In the present study, we evaluated the in vitro directly effect of the flavonoid quercetin against Leishmania (Viannia) braziliensis.

View Article and Find Full Text PDF

Activity, mechanisms of action, and toxicity of natural compounds have been investigated in a context in which knowledge on which pathway is activated remains crucial to understand the action mechanism of these bioactive substances when treating an infected host. Herein, we showed an ability of copaiba oil and kaurenoic acid to eliminate Trypanosoma cruzi forms by infected macrophages through other mechanisms in addition to nitric oxide, reactive oxygen species, iron metabolism, and antioxidant defense. Both compounds induced an anti-inflammatory response with an increase in IL-10 and TGF-β as well as a decrease in IL-12 production.

View Article and Find Full Text PDF

Background: Chagas' disease, caused by Trypanosoma cruzi, was described for the first time over a hundred years ago. Nonetheless, clinically available drugs still lack effective and selective properties. Nitric oxide (NO) produced by activated macrophages controls the progression of disease by killing the parasite.

View Article and Find Full Text PDF

Chagas disease (CD), caused by Trypanosoma cruzi, remains a serious public health problem. One of the causes of the high morbidity and mortality in patients is the lack of an effective drug therapy. Thus, the aim of this study was to evaluate the efficacy of the essential oil of Syzygium aromaticum alone and in combination with benznidazole (BZ) in mice orally inoculated with strain of T.

View Article and Find Full Text PDF

Leishmania (L.) amazonensis is the American Cutaneous Leishmaniasis-causing agents, and the available drugs for this disease present toxicity, low efficiency and difficulty of administration. Plants belong23ing to the Caryocar genus are found in Brazilian Cerrado, where fruits are used as food and in folk medicine, and previous studies showed several biological effects of extracts of this plant.

View Article and Find Full Text PDF

Background: Streptococcus agalactiae (group B Streptococcus - GBS) remains a leading cause of neonatal infections and an important cause of invasive infections in adults with underlying conditions.

Methods: This study evaluated for the first time the effect of an oleoresin collected from Copaifera multijuga Hayne (copaiba oil) alone or in combination with silver nanoparticles produced by green synthesis using Fusarium oxysporum (AgNPbio) against planktonic and sessile cells of GBS isolated from colonized women.

Results: Copaiba oil showed a dose-dependent bactericidal activity against planktonic GBS strains, including those resistant to erythromycin and/or clindamycin.

View Article and Find Full Text PDF

Parasites of the genus are capable of inhibiting effector functions of macrophages. These parasites have developed the adaptive ability to escape host defenses; for example, they inactivate the NF-B complex and suppress iNOS expression in infected macrophages, which are responsible for the production of the major antileishmanial substance nitric oxide (NO), favoring then its replication and successful infection. Metal complexes with NO have been studied as potential compounds for the treatment of certain tropical diseases, such as ruthenium compounds, known to be exogenous NO donors.

View Article and Find Full Text PDF

Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections.

View Article and Find Full Text PDF

Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T.

View Article and Find Full Text PDF