Publications by authors named "Danielle J Sanchez"

The role of PPAR gamma (PPARγ) has been well characterized in the developmental process of adipogenesis, yet its aberrant expression patterns and functions in cancer subtypes are less understood. Although PPARγ has been recently demonstrated to play non-cell-autonomous roles in promoting bladder urothelial carcinoma (UC) progression, underlying mechanisms of the cell-intrinsic oncogenic activity remain unknown. Here, we report robust expression and nuclear accumulation of PPARγ in 47% of samples of patients with UC, exceeding mRNA expression patterns published by The Cancer Genome Atlas.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. While the localized form of this disease can be treated surgically, advanced and metastatic stages are resistant to chemotherapies. Although more innovative treatments, such as targeted or immune-based therapies, exist, the need for new therapeutic options remains.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a malignancy characterized by deregulated hypoxia-inducible factor signaling, mutation of several key chromatin modifying enzymes, and numerous alterations in cellular metabolism. Pre-clinical studies have historically been limited to cell culture models, however, the identification of critical tumor suppressors and oncogenes from large-scale patient sequencing data has led to several new genetically engineered mouse models with phenotypes reminiscent of ccRCC. In this review, we summarize recent literature on these topics and discuss how they inform targeted therapeutic approaches for the treatment of ccRCC.

View Article and Find Full Text PDF

Objective: Clear cell renal cell carcinoma (ccRCC) is a subtype of kidney cancer defined by robust lipid accumulation, which prior studies have indicated plays an important role in tumor progression. We hypothesized that the peroxisome proliferator-activated receptor gamma (PPARγ), detected in both ccRCC tumors and cell lines, promotes lipid storage in ccRCC and contributes to tumorigenesis in this setting. PPARγ transcriptionally regulates a number of genes involved in lipid and glucose metabolism in adipocytes, yet its role in ccRCC has not been described.

View Article and Find Full Text PDF

Myc activation is a primary oncogenic event in many human cancers; however, these transcription factors are difficult to inhibit pharmacologically, suggesting that Myc-dependent downstream effectors may be more tractable therapeutic targets. Here, we show that Myc overexpression induces endoplasmic reticulum (ER) stress and engages the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP1) pathway through multiple molecular mechanisms in a variety of c-Myc- and N-Myc-dependent cancers. In particular, Myc-overexpressing cells require IRE1α/XBP1 signaling for sustained growth and survival in vitro and in vivo, dependent on elevated stearoyl-CoA-desaturase 1 (SCD1) activity.

View Article and Find Full Text PDF

Unlabelled: Two hallmarks of clear-cell renal cell carcinoma (ccRCC) are constitutive hypoxia-inducible factor (HIF) signaling and abundant intracellular lipid droplets (LD). However, regulation of lipid storage and its role in ccRCC are incompletely understood. Transcriptional profiling of primary ccRCC samples revealed that expression of the LD coat protein gene PLIN2 was elevated in tumors and correlated with HIF2α, but not HIF1α, activation.

View Article and Find Full Text PDF

Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver, a preleukemic condition termed transient myeloproliferative disorder, and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins, human embryonic stem (hES), and induced pluripotent stem (iPS) cells, were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation, we isolated disomic and trisomic subclones from the same parental iPS line, thereby generating subclones isogenic except for chromosome 21.

View Article and Find Full Text PDF