Background: More than half of mesothelioma tumours show alterations in the tumour suppressor gene BAP1. BAP1-deficient mesothelioma is shown to be sensitive to EZH2 inhibition in preclinical settings but only showed modest efficacy in clinical trial. Adding a second inhibitor could potentially elevate EZH2i treatment efficacy while preventing acquired resistance at the same time.
View Article and Find Full Text PDFUnlabelled: Malignant mesothelioma is a highly aggressive tumor with a survival of only 4-18 months after diagnosis. Treatment options for this disease are limited. Immune checkpoint blockade using ipilimumab and nivolumab has recently been approved as a frontline therapy, but this led to only a small improvement in overall patient survival.
View Article and Find Full Text PDFMore than half of patients with malignant mesothelioma show alterations in the BAP1 tumor-suppressor gene. Being a member of the Polycomb repressive deubiquitinating (PR-DUB) complex, BAP1 loss results in an altered epigenome, which may create new vulnerabilities that remain largely unknown. Here, we performed a CRISPR-Cas9 kinome screen in mesothelioma cells that identified two kinases in the mevalonate/cholesterol biosynthesis pathway.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to modulate proliferation, migration, and stress response. Whereas kinase signaling is believed to be an EMT driver, the molecular mechanisms underlying epithelial-mesenchymal interconversion are incompletely understood. Here, we show that the impact of chromatin regulators on EMT interconversion is broader than that of kinases.
View Article and Find Full Text PDFAltering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens.
View Article and Find Full Text PDFGlioblastoma is a lethal brain tumor that exhibits heterogeneity and resistance to therapy. Our understanding of tumor homeostasis is limited by a lack of genetic tools to selectively identify tumor states and fate transitions. Here, we use glioblastoma subtype signatures to construct synthetic genetic tracing cassettes and investigate tumor heterogeneity at cellular and molecular levels, and .
View Article and Find Full Text PDFKras-driven non-small-cell lung cancers (NSCLCs) are a leading cause of death with limited therapeutic options. Many NSCLCs exhibit high levels of Ezh2, the enzymatic subunit of polycomb repressive complex 2 (PRC2). We tested Ezh2 inhibitors as single agents or before chemotherapy in mice with orthotopic Kras-driven NSCLC grafts, which homogeneously express Ezh2.
View Article and Find Full Text PDFSince the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin.
View Article and Find Full Text PDFPolycomb repressive complexes (PRC) are frequently implicated in human cancer, acting either as oncogenes or tumor suppressors. Here, we show that PRC2 is a critical regulator of KRAS-driven non-small cell lung cancer progression. Modulation of PRC2 by either Ezh2 overexpression or Eed deletion enhances KRAS-driven adenomagenesis and inflammation, respectively.
View Article and Find Full Text PDFEZH2 is frequently overexpressed in glioblastoma (GBM), suggesting an oncogenic function that could be a target for therapeutic intervention. However, reduced EZH2 activity can also promote tumorigenesis, leading to concerns about the use of EZH2 inhibitors. Here, we provide further insight about the effects of prolonged Ezh2 inhibition in glioblastoma using preclinical mouse models and primary tumor-derived human GBM cell lines.
View Article and Find Full Text PDFLoss-of-function (LOF) experiments targeting multiple genes during tumorigenesis can be implemented using pooled shRNA libraries. RNAi screens in animal models rely on the use of multiple shRNAs to simultaneously disrupt gene function, as well as to serve as barcodes for cell fate outcomes during tumorigenesis. Here we provide a protocol for performing RNAi screens in orthotopic mouse tumor models, referring to glioma and lung adenocarcinoma as specific examples.
View Article and Find Full Text PDFHistone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling.
View Article and Find Full Text PDFIn mouse and human neural progenitor and glioblastoma "stem-like" cells, we identified key targets of the Polycomb-group protein BMI1 by combining ChIP-seq with in vivo RNAi screening. We discovered that Bmi1 is important in the cellular response to the transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) and endoplasmic reticulum (ER) stress pathways, in part converging on the Atf3 transcriptional repressor. We show that Atf3 is a tumor-suppressor gene inactivated in human glioblastoma multiforme together with Cbx7 and a few other candidates.
View Article and Find Full Text PDFPolycomb group (PcG) proteins form transcriptional repressor complexes with well-established functions during cell-fate determination. Yet, the mechanisms underlying their regulation remain poorly understood. Here, we extend the role of Polycomb complexes in the temporal control of neural progenitor cell (NPC) commitment by demonstrating that the PcG protein Ezh2 is necessary to prevent the premature onset of gliogenesis.
View Article and Find Full Text PDFPurpose: To develop a transgenic mouse model of glioma that can be conveniently used for testing therapy intervention strategies. High-grade glioma is a devastating and uniformly fatal disease for which better therapy is urgently needed. Typical for high-grade glioma is that glioma cells infiltrate extensively into surrounding pivotal brain structures, thereby rendering current treatments largely ineffective.
View Article and Find Full Text PDFBackground: Neural cells deficient for Polycomb group (PcG) protein Bmi1 are impaired in the formation and differentiation of high grade glioma, an incurable cancer of the brain. It was shown that mechanisms involved in cell adhesion and migration were specifically affected in these tumors.
Methods: Using biochemical and cell biological approaches, we investigated the adhesive capacities of Bmi1;Ink4a/Arf deficient primary neural stem cells (NSCs).
Background: Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells.
Methodology/principal Findings: We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis.
The Polycomb group and oncogene Bmi1 is required for the proliferation of various differentiated cells and for the self-renewal of stem cells and leukemic cancer stem cells. Repression of the Ink4a/Arf locus is a well described mechanism through which Bmi1 can exert its proliferative effects. However, we now demonstrate in an orthotopic transplantation model for glioma, a type of cancer harboring cancer stem cells, that Bmi1 is also required for tumor development in an Ink4a/Arf-independent manner.
View Article and Find Full Text PDFThe Polycomb group (PcG) gene Bmi1 promotes cell proliferation and stem cell self-renewal by repressing the Ink4a/Arf locus. We used a genetic approach to investigate whether Ink4a or Arf is more critical for relaying Bmi1 function in lymphoid cells, neural progenitors, and neural stem cells. We show that Arf is a general target of Bmi1, however particularly in neural stem cells, derepression of Ink4a contributes to Bmi1(-/-) phenotypes.
View Article and Find Full Text PDFWe have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a(-/-) mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration with loss of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF. Insertional mutagenesis by the latent retrovirus was synergistic with loss of Cdkn2a expression, as indicated by a marked acceleration in the development of both myeloid and lymphoid tumors.
View Article and Find Full Text PDF