Publications by authors named "Danielle Gleason"

The prevalence of substance use disorder in the liver transplantation (LT) population makes postoperative pain management challenging. We report our initial experience with a novel, comprehensive, multidisciplinary opioid avoidance pathway in 13 LT recipients between January 2018 and September 2019. Patients received comprehensive pre-LT education on postoperative opioid avoidance by the surgeon, pharmacist, and psychologist at the time of listing.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) and intellectual disability (ID) are often comorbid, but the extent to which they share common genetic causes remains controversial. Here, we present two autosomal-recessive "founder" mutations in the CC2D1A gene causing fully penetrant cognitive phenotypes, including mild-to-severe ID, ASD, as well as seizures, suggesting shared developmental mechanisms. CC2D1A regulates multiple intracellular signaling pathways, and we found its strongest effect to be on the transcription factor nuclear factor κB (NF-κB).

View Article and Find Full Text PDF

Charged multivesicular body protein 1A (CHMP1A; also known as chromatin-modifying protein 1A) is a member of the ESCRT-III (endosomal sorting complex required for transport-III) complex but is also suggested to localize to the nuclear matrix and regulate chromatin structure. Here, we show that loss-of-function mutations in human CHMP1A cause reduced cerebellar size (pontocerebellar hypoplasia) and reduced cerebral cortical size (microcephaly). CHMP1A-mutant cells show impaired proliferation, with increased expression of INK4A, a negative regulator of stem cell proliferation.

View Article and Find Full Text PDF

The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates.

View Article and Find Full Text PDF

Schizencephaly is a malformation of cortical development characterized by gray matter-lined clefts in the cerebral cortex and a range of neurological presentations. In some cases, there are features of septo-optic dysplasia concurrently with schizencephaly. The etiologies of both schizencephaly and septo-optic dysplasia are thought to be heterogeneous, but there is evidence that at least some cases have genetic origin.

View Article and Find Full Text PDF

Objective: We sought to explore the genetic and molecular causes of Troyer syndrome, one of several complicated hereditary spastic paraplegias (HSPs). Troyer syndrome had been thought to be restricted to the Amish; however, we identified 2 Omani families with HSP, short stature, dysarthria and developmental delay-core features of Troyer syndrome-and a novel mutation in the SPG20 gene, which is also mutated in the Amish. In addition, we analyzed SPG20 expression throughout development to infer how disruption of this gene might generate the constellation of developmental and degenerative Troyer syndrome phenotypes.

View Article and Find Full Text PDF

Maintenance of DNA integrity is crucial for all cell types, but neurons are particularly sensitive to mutations in DNA repair genes, which lead to both abnormal development and neurodegeneration. We describe a previously unknown autosomal recessive disease characterized by microcephaly, early-onset, intractable seizures and developmental delay (denoted MCSZ). Using genome-wide linkage analysis in consanguineous families, we mapped the disease locus to chromosome 19q13.

View Article and Find Full Text PDF

Although autosomal genes are increasingly recognized as important causes of intellectual disability, very few of them are known. We identified a genetic locus for autosomal-recessive nonsyndromic intellectual disability associated with variable postnatal microcephaly through homozygosity mapping of a consanguineous Israeli Arab family. Sequence analysis of genes in the candidate interval identified a nonsense nucleotide change in the gene that encodes TRAPPC9 (trafficking protein particle complex 9, also known as NIBP), which has been implicated in NF-kappaB activation and possibly in intracellular protein trafficking.

View Article and Find Full Text PDF

Walker-Warburg syndrome (WWS) is a genetically heterogeneous autosomal recessive disease characterized by congenital muscular dystrophy, cobblestone lissencephaly, and ocular malformations. Mutations in six genes involved in the glycosylation of á-dystroglycan (POMT1, POMT2, POMGNT1, FCMD, FKRP and LARGE) have been identified in WWS patients, but account for only a portion of WWS cases. To better understand the genetics of WWS and establish the frequency and distribution of mutations across WWS genes, we genotyped all known loci in a cohort of 43 WWS patients of varying geographical and ethnic origin.

View Article and Find Full Text PDF

To find inherited causes of autism-spectrum disorders, we studied families in which parents share ancestors, enhancing the role of inherited factors. We mapped several loci, some containing large, inherited, homozygous deletions that are likely mutations. The largest deletions implicated genes, including PCDH10 (protocadherin 10) and DIA1 (deleted in autism1, or c3orf58), whose level of expression changes in response to neuronal activity, a marker of genes involved in synaptic changes that underlie learning.

View Article and Find Full Text PDF