Epidemiological studies have shown that circadian rhythm disruption (CRD) is associated with the risk of breast cancer. However, the role of CRD in mammary gland morphology and aggressive basal mammary tumorigenesis and the molecular mechanisms underlying CRD and cancer risk remain unknown. To investigate the effect of CRD on aggressive tumorigenesis, a genetically engineered mouse model that recapitulates the human basal type of breast cancer was used for this study.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling.
View Article and Find Full Text PDFCancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin.
View Article and Find Full Text PDF