Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory.
View Article and Find Full Text PDFMitochondrial bioenergetic processes are fundamental to development, stress responses, and health. is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory.
View Article and Find Full Text PDFThis review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors.
View Article and Find Full Text PDFIn intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans.
View Article and Find Full Text PDFMitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose.
View Article and Find Full Text PDFGlutathione (GSH) is a major cellular antioxidant molecule participating in several biological processes, including immune function. In this study, we investigated the importance of GSH to oysters Crassostrea gigas immune response. Oysters were treated with the GSH-synthesis inhibitor buthionine sulfoximine (BSO), and the function of immune cells and mortality were evaluated after a bacterial challenge with different Vibrio species.
View Article and Find Full Text PDFThe extensive use of silver nanoparticles (AgNPs) in manufactured products will inevitably increase environmental exposure, highlighting the importance of accurate toxicity assessments. A frequent strategy to estimate AgNP cytotoxicity is to use absorbance or fluorescent-based assays. In this study we report that AgNPs - with or without surface functionalizations (polyvinyl pyrrolidone or gum arabic), and of different sizes (2-15 nm) - can interfere with the spectrometric quantification of different dyes commonly used in cytotoxicity assays, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), Hoechst, and Resazurin.
View Article and Find Full Text PDFMild suppression of mitochondrial activity has beneficial effects across species. The nematode is a versatile, genetically tractable model organism widely employed for aging studies, which has led to the identification of many of the known evolutionarily conserved mechanisms regulating lifespan. In the pro-longevity effect of reducing mitochondrial function, for example by RNA interference, is only achieved if mitochondrial stress is applied during larval development.
View Article and Find Full Text PDFMesencephalic astrocyte-derived neurotrophic factor (MANF) is the only human neurotrophic factor with an evolutionarily-conserved C. elegans homolog, Y54G2A.23 or manf-1.
View Article and Find Full Text PDFMitochondria are key targets of many environmental contaminants, because specific chemicals can interact directly with mitochondrial proteins, lipids, and ribonucleic acids. These direct interactions serve as molecular initiating events that impede adenosine triphosphate production and other critical functions that mitochondria serve within the cell (e.g.
View Article and Find Full Text PDFPerkinsus spp. have been detected in various bivalve species from north-east Brazil. Santa Catarina is a South Brasil state with the highest national oyster production.
View Article and Find Full Text PDFStarvation significantly alters cellular physiology, and signs of aging have been reported to occur during starvation. Mitochondria are essential to the regulation of cellular energetics and aging. We sought to determine whether mitochondria exhibit signs of aging during starvation and whether quality control mechanisms regulate mitochondrial physiology during starvation.
View Article and Find Full Text PDFRecent decades have seen a rapid increase in reported toxic effects of drugs and pollutants on mitochondria. Researchers have also documented many genetic differences leading to mitochondrial diseases, currently reported to affect ∼1 person in 4,300, creating a large number of potential gene-environment interactions in mitochondrial toxicity. We briefly review this history, and then highlight cutting-edge areas of mitochondrial research including the role of mitochondrial reactive oxygen species in signaling; increased understanding of fundamental biological processes involved in mitochondrial homeostasis (DNA maintenance and mutagenesis, mitochondrial stress response pathways, fusion and fission, autophagy and biogenesis, and exocytosis); systemic effects resulting from mitochondrial stresses in specific cell types; mitochondrial involvement in immune function; the growing evidence of long-term effects of mitochondrial toxicity; mitochondrial-epigenetic cross-talk; and newer approaches to test chemicals for mitochondrial toxicity.
View Article and Find Full Text PDFNrf2 is a well-known transcription factor controlling a number of antioxidant defense-related genes, which is understudied in bivalves. In this study, oysters Crassostrea gigas were exposed for 24, 48 and 96 h to 10 or 30 μM tert-butylhydroquinone (tBHQ), a classic Nrf2 activator. At 96 h, a clear induction of GSH-related antioxidant defenses was observed in gills of tBHQ-exposed animals, including GSH, glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR).
View Article and Find Full Text PDFThis study investigated the effects of hypoxia on oxidative stress response and immune function in mussels Perna perna exposed to air for 6, 12, 24 and 48 h. In air-exposed mussels, the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione reductase (GR) activities were lower in gill tissues (24-48 h) and digestive gland (12 h), while the glutathione peroxidase and GR activities were increased in the digestive gland (48 h). In both tissues, aerial exposure promoted a rapid (6 h) and persistent (up to 48 h) increase of glutathione levels.
View Article and Find Full Text PDFAnalysis of the Pacific oyster Crassostrea gigas annotated genome revealed genes with conserved sequences belonging to typical cap 'n' collar Nrf2 domain, a major player in antioxidant protection, and domains belonging to Nrf2 cytoplasmic repressor (Keap1), but little is known about Nrf2/Keap1 induction in bivalves. C. gigas were exposed to waterborne 10 and 30μM curcumin, a known inducer of the mammalian Nrf2.
View Article and Find Full Text PDFUrban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2).
View Article and Find Full Text PDFThe mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation.
View Article and Find Full Text PDFα-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP.
View Article and Find Full Text PDFFish Shellfish Immunol
October 2015
Bivalves are animals with worldwide distribution. Although they play key roles in economic activities, human feeding and environmental studies, there is a considerable lack of knowledge about the relationship between their immune system and antioxidant defenses. Here, we performed an in vitro experiment where Crassostrea gigas hemocytes were exposed to the electrophilic compound 1-chloro-2,4-dinitrobenzene (CDNB, 0.
View Article and Find Full Text PDFOrganic peroxide elimination in eukaryotes essentially depends on glutathione peroxidase (GPx) and peroxiredoxin (Prx) enzymes, which are supported by their respective electron donors, glutathione (GSH) and thioredoxin (Trx). This system depends on the ancillary enzymes glutathione reductase (GR) and thioredoxin reductase (TrxR) to maintain GSH and Trx in their reduced state. This study discusses the biological importance of GR and TrxR in supporting GPx and Prx during cumene hydroperoxide (CHP) exposure in brown mussel Perna perna.
View Article and Find Full Text PDFThe increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnONP) was investigated in Pacific oysters Crassostrea gigas. The nanoscale of ZnONP, in vehicle or ultrapure water, was confirmed, presenting an average size ranging from 28 to 88 nm.
View Article and Find Full Text PDF