The eastern hemlock (Tsuga canadensis) is an important foundation species that is currently declining throughout eastern U.S. forests due to the exotic pests hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa).
View Article and Find Full Text PDFArid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events.
View Article and Find Full Text PDFPhysiological activity and structural dynamics in arid and semi-arid ecosystems are driven by discrete inputs or "pulses" of growing season precipitation. Here we describe the short-term dynamics of ecosystem physiology in experimental stands of native (Heteropogon contortus) and invasive (Eragrostis lehmanniana) grasses to an irrigation pulse across two geomorphic surfaces with distinctly different soils: a Pleistocene-aged surface with high clay content in a strongly horizonated soil, and a Holocene-aged surface with low clay content in homogenously structured soils. We evaluated whole-ecosystem and leaf-level CO2 and H2O exchange, soil CO2 efflux, along with plant and soil water status to understand potential constraints on whole-ecosystem carbon exchange during the initiation of the summer monsoon season.
View Article and Find Full Text PDFUnderstanding energy and material fluxes through ecosystems is central to many questions in global change biology and ecology. Ecosystem respiration is a critical component of the carbon cycle and might be important in regulating biosphere response to global climate change. Here we derive a general model of ecosystem respiration based on the kinetics of metabolic reactions and the scaling of resource use by individual organisms.
View Article and Find Full Text PDF