Thionated nucleobases are obtained by replacing oxygen with sulphur atoms in the canonical nucleobases. They absorb light efficiently in the near-ultraviolet, populating singlet states which undergo intersystem crossing to the triplet manifold on an ultrashort time scale with a high quantum yield. Nonetheless there are still important open questions about the primary mechanisms responsible for this ultrafast transition.
View Article and Find Full Text PDFThe transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature.
View Article and Find Full Text PDFUnderstanding the primary steps following UV photoexcitation in sulphur-substituted DNA bases (thiobases) is fundamental for developing new phototherapeutic drugs. However, the investigation of the excited-state dynamics in sub-100 fs time scales has been elusive until now due to technical challenges. Here, we track the ultrafast decay mechanisms that lead to the electron trapping in the triplet manifold for 6-thioguanine in an aqueous solution, using broadband transient absorption spectroscopy with a sub-20 fs temporal resolution.
View Article and Find Full Text PDFPhotoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time.
View Article and Find Full Text PDFWe combined sub-30 fs broadband transient absorption spectroscopy in the ultraviolet with state-of-the-art quantum mechanics/molecular mechanics simulations to study the ultrafast excited-state dynamics of the sulfur-substituted nucleobase 4-thiouracil. We observed a clear mismatch between the time scales for the decay of the stimulated emission from the bright ππ* state (76 ± 16 fs, experimentally elusive until now) and the buildup of the photoinduced absorption of the triplet state (225 ± 30 fs). These data provide evidence that the intersystem crossing occurs via a dark state, which is intermediately populated on the sub-100 fs time scale.
View Article and Find Full Text PDF