Publications by authors named "Danielle Brandes"

Background: Sensitivity to ionizing radiation differs between individuals, but there is a limited understanding of the biological mechanisms that account for these variations. One example of such mechanisms are the mutations in the ATM (mutated ataxia telangiectasia) gene, that cause the rare recessively inherited disease Ataxia telangiectasia (AT). Hallmark features include chromosomal instability and increased sensitivity to ionizing radiation (IR).

View Article and Find Full Text PDF

Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition.

View Article and Find Full Text PDF

The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, + and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are using new tools to help find out if kids might have gene flaws that could lead to cancer, especially in blood-related diseases.
  • They studied 131 children and their parents, discovering a total of 458 gene changes, but only found that a small number of these children (only 5) had gene changes linked to cancer.
  • The research showed that more gene changes are found in kids as their dads get older, and this type of study helps understand how these gene changes get passed down and their possible connection to diseases.
View Article and Find Full Text PDF

Application of next-generation sequencing may lead to the detection of secondary findings (SF) not related to the initially analyzed disease but to other severe medically actionable diseases. However, the analysis of SFs is not yet routinely performed. We mined whole-exome sequencing data of 231 pediatric cancer patients and their parents who had been treated in our center for the presence of SFs.

View Article and Find Full Text PDF

The improvement in sensitive techniques has allowed the detection of tumor-specific aberrations in circulating tumor (ct) DNA. Amplification-refractory mutation system PCR has been used for the analysis of ctDNA to detect resistance-causing mutations in the epidermal growth factor receptor gene (eg, EGFR T790M) in lung cancer patients. So far, Streck tubes have been widely used as standard blood collection tubes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhdk6kl97t4kp3mg242sstbnloo3sdi91): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once