The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate-limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes.
View Article and Find Full Text PDFAgents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the setting, with complete tumor regression observed in a lymphoma model.
View Article and Find Full Text PDFAlthough aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors.
View Article and Find Full Text PDFRecent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic.
View Article and Find Full Text PDFThe Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET) driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag), stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch.
View Article and Find Full Text PDFThe type 1 insulin-like growth factor receptor (IGF-1R) tyrosine kinase is an important mediator of the protumorigenic effects of IGF-I/II, and inhibitors of IGF-1R signaling are currently being tested in clinical cancer trials aiming to assess the utility of this receptor as a therapeutic target. Despite mounting evidence that the highly homologous insulin receptor (IR) can also convey protumorigenic signals, its direct role in cancer progression has not been genetically defined in vivo, and it remains unclear whether such a role for IR signaling could compromise the efficacy of selective IGF-1R targeting strategies. A transgenic mouse model of pancreatic neuroendocrine carcinogenesis engages the IGF signaling pathway, as revealed by its dependence on IGF-II and by accelerated malignant progression upon IGF-1R overexpression.
View Article and Find Full Text PDFTumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L), demonstrated accelerated tumor formation and growth.
View Article and Find Full Text PDFObjective: To investigate the association of specific autoantibodies with distinct disease phenotypes. The association of autoantibodies to nucleophosmin/B23 with pulmonary hypertension in scleroderma, and the susceptibility of autoantigens to cleavage by granzyme B (GB), provided a focus for these studies.
Methods: Intact cells were subjected to cytotoxic lymphocyte granule-induced death, and the susceptibility of autoantigens to cleavage by GB was addressed by immunoblotting and/or by a novel immunofluorescence assay.
The association of a specific autoantibody response with distinct disease phenotypes is observed in both autoimmune diseases and cancer. Although the underlying mechanisms remain unclear, it is likely that unique properties of disease-specific autoantigens expressed in the relevant target cells play a role. It has recently been observed that the majority of autoantigens targeted across the spectrum of systemic autoimmune diseases (but not nonautoantigens) are selectively cleaved by the cytotoxic lymphocyte granule protease granzyme B (GB), generating unique fragments not observed during other forms of cell death.
View Article and Find Full Text PDFObjective: To determine whether the abundant nucleolar phosphoprotein B23 is a target of autoantibodies in scleroderma, and to examine the clinical phenotype associated with these antibodies.
Methods: Ninety-two randomly selected scleroderma sera were screened by enzyme-linked immunosorbent assay against recombinant human B23. Demographic, clinical, and serologic parameters associated with B23 autoantibody status were examined.