Publications by authors named "Danielle Adank"

Alcohol use disorder (AUD) is a significant global health issue. Despite historically higher rates among men, AUD prevalence and negative alcohol-related outcomes in women are rising. Loneliness in humans has been associated with increased alcohol use, and traditional rodent drinking models involve single housing, presenting challenges for studying social enrichment.

View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST) and Crh+ neurons in this region play a key role in chronic ethanol-induced increases in volitional intake, hypothesized to be driven by emergent negative affective behaviors. Excitatory N-methyl-d-aspartate receptors (NMDARs) are a major target of ethanol, and chronic ethanol exposure has been shown to regulate NMDAR function and expression.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a significant global health issue. Despite historically higher rates among men, AUD prevalence and negative alcohol-related outcomes in women are rising. Loneliness in humans has been associated with increased alcohol use, and traditional rodent drinking models involve single housing, presenting challenges for studying social enrichment.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST), and + neurons in this region are thought to play a key role in chronic ethanol-induced increases in volitional ethanol intake. This role has been hypothesized to be driven by emergent BNST-dependent negative affective behaviors.

View Article and Find Full Text PDF

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence.

View Article and Find Full Text PDF

The endocannabinoid (eCB) system is a key modulator of glutamate release within limbic neurocircuitry and thus heavily modulates stress responsivity and adaptation. The ventral hippocampus (vHPC)-basolateral amygdala (BLA) circuit has been implicated in the expression of negative affective states following stress exposure and is modulated by retrograde eCB signaling. However, the mechanisms governing eCB release and the causal relationship between vHPC-BLA eCB signaling and stress-induced behavioral adaptations are not known.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates rodent drinking behavior to understand factors like thirst, circadian rhythms, and the impact of drugs, but traditional fluid intake methods are inefficient and lack detail.
  • - The researchers developed the LIQ HD (Lick Instance Quantifier Home cage Device), which uses capacitive sensors for accurate lick detection, enabling analysis of licking behavior in multiple cages with a user-friendly touchscreen interface.
  • - LIQ HD allows for minute-to-minute tracking of drinking behavior in up to 18 rodent cages, providing validated data on preferences and licking patterns over extended periods, and it's designed to be open-source for wider research application.
View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNST) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNST cells are recruited during bouts of active stress coping.

View Article and Find Full Text PDF

The prefrontal cortex is highly susceptible to the detrimental effects of stress and has been implicated in the pathogenesis of stress-related psychiatric disorders. It is not well understood, however, how stress is represented at the neuronal level in the prefrontal cortical neuronal ensembles. Even less understood is how the representation of stress changes over time with repeated exposure.

View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) commonly occurs in patients with chronic pain, and a major barrier to achieving abstinence and preventing relapse is the emergence of hyperalgesia during alcohol withdrawal. Elucidating novel therapeutic approaches to target hyperalgesia associated with alcohol withdrawal could have important implications for treating AUD. Here, we examined the role of 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid (eCB) signaling in the regulation of hyperalgesia associated with alcohol withdrawal in mice.

View Article and Find Full Text PDF

There is a critical need to find safe therapeutics to treat an increasingly obese population and diseases associated with an imbalance in energy homeostasis. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) ligands have long been the focus to help scientists understand energy homeostasis and the regulation of feeding behavior. Herein, we use a nanomolar macrocyclic melanocortin receptor agonist ligand MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro) to examine metabolic and energy hemostasis profiles upon intrathecal (IT) administration directly into the spinal cord as compared to intracerebroventricular (ICV) administration directly into the brain.

View Article and Find Full Text PDF

β-Defensin 3 (BD3) was identified as a ligand for the melanocortin receptors (MCRs) in 2007, although the pharmacology activity of BD3 has not been clearly elucidated. Herein, it is demonstrated that human BD3 and mouse BD3 are full micromolar agonists at the MCRs. Furthermore, mouse β-defensin 1 (BD1) and human BD1 are also MCR micromolar agonists.

View Article and Find Full Text PDF

The melanocortin system has five receptors, and antagonists of the central melanocortin receptors (MC3R, MC4R) are postulated to be viable therapeutics for disorders of negative energy balance such as anorexia, cachexia, and failure to thrive. Agouti-related protein (AGRP) is an antagonist of the MC3R and an antagonist/inverse agonist of the MC4R. Biophysical NMR-based structural studies have demonstrated that the active sequence of this hormone, Arg-Phe-Phe, is located on an exposed β-hairpin loop.

View Article and Find Full Text PDF

Central administration of melanocortin ligands has been used as a critical technique to study energy homeostasis. While intracerebroventricular (ICV) injection is the most commonly used method during these investigations, intrathecal (IT) injection can be equally efficacious for the central delivery of ligands. Importantly, intrathecal administration can optimize exploration of melanocortin receptors in the spinal cord.

View Article and Find Full Text PDF

Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm.

View Article and Find Full Text PDF

Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm.

View Article and Find Full Text PDF

The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure.

View Article and Find Full Text PDF

Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VTA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters.

View Article and Find Full Text PDF

Drug addiction is characterized by compulsive drug-taking behaviors and a high propensity to relapse following drug cessation. Drug craving and seeking can increase during a period of abstinence, but this phenomenon is not observed in drug-induced reinstatement models. To investigate the effect of withdrawal on cocaine relapse, rats were exposed to extended-access cocaine self-administration and subjected to either 1 or 30 d of withdrawal.

View Article and Find Full Text PDF

The addicted phenotype is characterized as a long-lasting, chronically relapsing disorder that persists following long periods of abstinence, suggesting that the underlying molecular changes are stable and endure for long periods even in the absence of drug. Here, we investigated Transforming Growth Factor-Beta Type I receptor (TGF-β R1) expression in the nucleus accumbens (NAc) following periods of withdrawal from cocaine self-administration (SA) and a sensitizing regimen of non-contingent cocaine. Rats were exposed to either (i) repeated systemic injections (cocaine or saline), or (ii) self-administration (cocaine or saline) and underwent a period of forced abstinence (either 1 or 7 days of drug cessation).

View Article and Find Full Text PDF