Publications by authors named "Danielle A S Rodrigues"

The vast spectrum of clinical features of COVID-19 keeps challenging scientists and clinicians. Low resistance to infection might result in long-term viral persistence, but the underlying mechanisms remain unclear. Here, we studied the immune response of immunocompetent COVID-19 patients with prolonged SARS-CoV-2 infection by immunophenotyping, cytokine and serological analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied COVID-19 patients in Brazil to identify molecular biomarkers linked to disease severity, focusing on inflammatory mediators in patients compared to healthy controls.
  • They found that critically ill patients showed elevated serum levels of multiple inflammatory mediators, including HMGB1, which is associated with worse outcomes.
  • The study suggests that high levels of HMGB1 (over 125.4 ng/ml) could serve as a useful biomarker for predicting severe cases and increased risk of death in COVID-19 patients.
View Article and Find Full Text PDF

Serological tests detect antibodies generated by infection or vaccination, and are indispensable tools along different phases of a pandemic, from early monitoring of pathogen spread up to seroepidemiological studies supporting immunization policies. This work discusses the development of an accurate and affordable COVID-19 antibody test, from production of a recombinant protein antigen up to test validation and economic analysis. We first developed a cost-effective, scalable technology to produce SARS-COV-2 spike protein and then used this antigen to develop an enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a global problem in part because of the emergence of variants of concern that evade neutralization by antibodies elicited by prior infection or vaccination. Here we report on human neutralizing antibody and memory responses to the Gamma variant in a cohort of hospitalized individuals. Plasma from infected individuals potently neutralized viruses pseudotyped with Gamma SARS-CoV-2 spike protein, but neutralizing activity against Wuhan-Hu-1-1, Beta, Delta, or Omicron was significantly lower.

View Article and Find Full Text PDF

The dynamics underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection remain poorly understood. We identified a small cluster of patients in Brazil who experienced 2 episodes of coronavirus disease (COVID-19) in March and late May 2020. In the first episode, patients manifested an enhanced innate response compared with healthy persons, but neutralizing humoral immunity was not fully achieved.

View Article and Find Full Text PDF

Hemolysis causes an increase of intravascular heme, oxidative damage, and inflammation in which macrophages play a critical role. In these cells, heme can act as a prototypical damage-associated molecular pattern, inducing TLR4-dependent cytokine production through the MyD88 pathway, independently of TRIF. Heme promotes reactive oxygen species (ROS) generation independently of TLR4.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma.

View Article and Find Full Text PDF