Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-β superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function.
View Article and Find Full Text PDFPremature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that is critical for AT1 cell fate maintenance and function.
View Article and Find Full Text PDFIntroduction: Lung biopsy is infrequently performed in the population of infants with severe bronchopulmonary dysplasia (BPD). Yet, its presentation may overlap with other infant diffuse lung diseases, including those within the spectrum of childhood interstitial lung diseases (chILD). Lung biopsy might differentiate between these entities or identify those with an extremely poor prognosis.
View Article and Find Full Text PDFAlveolar epithelial type 2 (AT2) cells harbor the facultative progenitor capacity in the lung alveolus to drive regeneration after lung injury. Using single-cell transcriptomics, software-guided segmentation of tissue damage, and in vivo mouse lineage tracing, we identified the grainyhead transcription factor cellular promoter 2-like 1 (Tfcp2l1) as a regulator of this regenerative process. Tfcp2l1 loss in adult AT2 cells inhibits self-renewal and enhances AT2-AT1 differentiation during tissue regeneration.
View Article and Find Full Text PDFBackground: Acute respiratory distress syndrome (ARDS) leads to progressive lung injury, which significantly impacts patient morbidity and mortality but may differ clinically between the sexes. Cytochrome P450 (CYP) 1A enzymes are protective against hyperoxic lung injury and may contribute to sex-dependent pathology. NRF2 is a critical transcriptional regulator of antioxidants and loss of NRF2 leads to severe hyperoxic lung injury and mortality in mice.
View Article and Find Full Text PDFWolf-Hirschhorn syndrome (WHS) is caused by partial deletion of the short arm of chromosome 4 and is characterized by dysmorphic facies, congenital heart defects, intellectual/developmental disability, and increased risk for congenital diaphragmatic hernia (CDH). In this report, we describe a stillborn girl with WHS and a large CDH. A literature review revealed 15 cases of WHS with CDH, which overlap a 2.
View Article and Find Full Text PDFBackgroundPremature birth occurs when nephrogenesis is incomplete and has been linked to increased renal pathologies in the adult. Metabolic factors complicating preterm birth may have additional consequences for kidney development. Here, we evaluated the effects of prematurity and hyperglycemia on nephrogenesis in premature baboons when compared with those in term animals.
View Article and Find Full Text PDFOsteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts.
View Article and Find Full Text PDFThe loss of caspase-2 (Casp-2) in mice results in an osteopenic phenotype associated with increased numbers of osteoclasts in vivo. In this study, we show that Casp-2 is involved in osteoclastogenesis. Protein levels of Casp-2 decrease during the differentiation of macrophages to osteoclasts.
View Article and Find Full Text PDFCASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress.
View Article and Find Full Text PDF