Publications by authors named "Danieli F Buccini"

Background: Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.

Major Conclusions: Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a significant clinical challenge associated with high morbidity and mortality. Worldwide, it affects approximately 200.000 individuals annually, with a staggering 40 % mortality rate in hospitalized cases and persistent complications in out-of-hospital cases.

View Article and Find Full Text PDF

Diverse computational approaches have been widely used to assist in designing antimicrobial peptides with enhanced activities. This tactic has also been used to address the need for new treatment alternatives to combat resistant bacterial infections. Herein, we have designed eight variants from a natural peptide, pro-adrenomedullin N-terminal 20 peptide (PAMP), using an in silico pattern insertion approach, the Joker algorithm.

View Article and Find Full Text PDF

Bacterial resistance has become a serious public health problem in recent years, thus encouraging the search for new antimicrobial agents. Here, we report an antimicrobial peptide (AMP), called PEPAD, which was designed based on an encrypted peptide from a Kunitz-type plant peptidase inhibitor. PEPAD was capable of rapidly inhibiting and eliminating numerous bacterial species at micromolar concentrations (from 4μM to 10 μM), with direct membrane activity.

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial infections are a major health threat, with antibiotic resistance making treatment particularly difficult, especially for staphylococcal infections.
  • Antimicrobial peptides (AMPs) like the Cry10Aa protein show potential as alternatives to traditional antibiotics due to their unique properties and effectiveness against multidrug-resistant bacteria.
  • The study developed six peptide variants using the Joker algorithm, revealing that two specific peptides (AMPCry10Aa_1 and AMPCry10Aa_5) effectively killed bacteria within two hours, remained stable in human serum, and showed low toxicity to human cells.
View Article and Find Full Text PDF

The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A.

View Article and Find Full Text PDF

Human alphaherpesvirus 1 (HSV-1) is a significantly widespread viral pathogen causing recurrent infections that are currently incurable despite available treatment protocols. Studies have highlighted the potential of antimicrobial peptides sourced from venom, particularly those belonging to the mastoparan family, as effective against HSV-1. This study aimed to demonstrate the antiviral properties of mastoparans, including mastoparan-L [I, R], mastoparan-MO, and [I, R] mastoparan, against HSV-1.

View Article and Find Full Text PDF

Bovine mastitis is a frequent infection in lactating cattle, causing great economic losses. represents the main etiological agent, which causes recurrent and persistent intramammary infections because conventional antibiotics are ineffective against it. Mastoparan-like peptides are multifunctional molecules with broad antimicrobial potential, constituting an attractive alternative.

View Article and Find Full Text PDF

Antimicrobial peptides are part of the organism's defense system. They are multifunctional molecules capable of modulating the host's immune system and recognizing molecules present in pathogens such as lipopolysaccharides (LPSs). LPSs are recognized by molecular patterns associated with pathogens known as Toll-like receptors (TLRs) that protect the organism from pathological microorganisms.

View Article and Find Full Text PDF

Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action.

View Article and Find Full Text PDF

Structural diversity drives multiple biological activities and mechanisms of action in linear peptides. Here we describe an unusual N-capping asparagine-lysine-proline (NKP) motif that confers a hybrid multifunctional scaffold to a computationally designed peptide (PaDBS1R7). PaDBS1R7 has a shorter α-helix segment than other computationally designed peptides of similar sequence but with key residue substitutions.

View Article and Find Full Text PDF

Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years.

View Article and Find Full Text PDF

Bacterial infections caused by intracellular pathogens are difficult to control. Conventional antibiotic therapies are often ineffective, as high doses are needed to increase the number of antibiotics that will cross the host cell membrane to act on the intracellular bacterium. Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against host cells.

View Article and Find Full Text PDF

In order to discover a new compound having anti-inflammatory activity, a nitro-Schiff base was evaluated. The compound was synthesized and characterized by H NMR and C NMR. The cytotoxic activity was evaluated in vitro by hemolysis and MTT cell viability assay.

View Article and Find Full Text PDF

L. a primary producer of silk, is the main tool in the sericulture industry and provides the means of livelihood to a large number of people. Silk cocoon crop losses due to bacterial infection pose a major threat to the sericulture industry.

View Article and Find Full Text PDF

The advent of multidrug resistance among pathogenic bacteria has attracted great attention worldwide. As a response to this growing challenge, diverse studies have focused on the development of novel anti-infective therapies, including antimicrobial peptides (AMPs). The biological properties of this class of antimicrobials have been thoroughly investigated, and membranolytic activities are the most reported mechanisms by which AMPs kill bacteria.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) represent alternative strategies to combat the global health problem of antibiotic resistance. However, naturally occurring AMPs are generally not sufficiently active for use as antibiotics. Optimized synthetic versions incorporating additional design principles are needed.

View Article and Find Full Text PDF

In recent decades, cancer and multidrug resistance have become a worldwide problem, resulting in high morbidity and mortality. Some infectious agents like , spp. spp.

View Article and Find Full Text PDF

Biofilm-related infections represent an enormous clinical challenge nowadays. In this context, diverse studies are underway to develop effective antimicrobial agents targeting bacterial biofilms. Here, we describe the antibacterial and anti-biofilm activities of a short, cationic peptide named R5F5, obtained from sliding-window analysis based on a peptide (PcDBS1R5) derived from Plasmodium chabaudi.

View Article and Find Full Text PDF

The macauba palm (Acrocomia aculeata) is native of tropical America and is found mostly in the Cerrados and Pantanal biomes. The fruits provide an oily pulp, rich in long chain fatty acids, and a kernel that encompass more than 50% of lipids rich in medium chain fatty acids (MCFA). Based on biochemical and nutritional evidences MCFA is readily catabolized and can reduce body fat accumulation.

View Article and Find Full Text PDF