Publications by authors named "Daniele Zampieri"

Sigma receptors (SRs), including SR1 and SR2 subtypes, have attracted increasing interest in recent years due to their involvement in a wide range of activities, including the modulation of opioid analgesia, neuroprotection, and potential anticancer activity. In this context, haloperidol (HAL), a commonly used antipsychotic drug, also possesses SR activity and cytotoxic effects. Herein, we describe the identification of novel SR ligands, obtained by a chemical hybridization approach.

View Article and Find Full Text PDF

Oligodendroglioma (OG) is a brain tumor that contributes to <1% of brain tumor diagnoses in the pediatric population. Unfortunately, pediatric OG remains without definitive molecular characteristics to aid in diagnosis, and little is known about the tumor microenvironment. Tumor cells' metabolism and proliferation rate are generally higher than those of healthy cells, so their iron demand is also significantly higher.

View Article and Find Full Text PDF

Designing and discovering compounds for dual-target inhibitors is challenging to synthesize new, safer, and more efficient drugs than single-target drugs, especially to treat multifactorial diseases such as cancer. The simultaneous regulation of multiple targets might represent an alternative synthetic approach to optimize patient compliance and tolerance, minimizing the risk of target-based drug resistance due to the modulation of a few targets. To this end, we conceived for the first time the design and synthesis of dual-ligands σR/HDACi to evaluate possible employment as innovative candidates to address this complex disease.

View Article and Find Full Text PDF

Neurodegeneration is a slow and progressive loss of neuronal cells or their function in specific regions of the brain or in the peripheral system. Among several causes responsible for the most common neurodegenerative diseases (NDDs), cholinergic/dopaminergic pathways, but also some endogenous receptors, are often involved. In this context, sigma 1 receptor (S1R) modulators can be used as neuroprotective and antiamnesic agents.

View Article and Find Full Text PDF

To extend our screening for novel antimycobacterial molecules, we have designed, synthesized, and biologically evaluated a library of 14 new hydrazide derivatives containing 1,3,4-oxadiazole core. A variety of mycobacterial strains, including some drug-resistant strains, were tested for antimycobacterial activity. Among the compounds tested, five showed high antimycobacterial activity (MIC values of 8 μg/mL) against H37Ra attenuated strain, and two derivatives were effective (MIC of 4 µg/mL) against pyrazinamide-resistant strains.

View Article and Find Full Text PDF

In our continuing effort to develop novel sigma receptor (SR) ligands, we present the design, synthesis and binding studies of a small library of aminopropylcarboxamide derivatives, obtained from a deconstruction of the piperidine ring of previously synthesized piperidine-based compounds. The best results were achieved with benzofuran (5c, 5g) and quinoline (5a, 5e) derivatives. These compounds revealed the highest affinity for both receptor subtypes.

View Article and Find Full Text PDF

Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice.

View Article and Find Full Text PDF

Sigma-1 receptor (S1R) is a promising molecular target for the development of novel effective therapies against neurodegenerative diseases. To speed up the discovery of new S1R modulators, herein we report the development of a reliable in silico protocol suitable to predict the affinity of small molecules against S1R. The docking method was validated by comparing the computational calculated values of a test set of new aryl-aminoalkyl-ketone with experimental determined binding affinity.

View Article and Find Full Text PDF

Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen.

View Article and Find Full Text PDF

Among several potential applications, sigma receptor ligands can be used as antipsychotics, antiamnesics, and against other neurodegenerative disorders as well as neuroprotective agents. We present herein a new series of diazepane-containing derivatives as σR ligands obtained by a conformational expansion approach of our previously synthesized piperidine-based compounds. The best results were reached by benzofurane , and quinoline , -substituted diazepane derivatives, which showed the highest σR affinity.

View Article and Find Full Text PDF

This study examines in depth benzoxazine nucleus for antimycobacterial property. We synthesized some benzoxazin-2-one and benzoxazin-3-one derivatives, which were tested for activity against a panel of Mycobacterium tuberculosis (Mtb) strains, including H37Ra, H37Rv and some resistant strains. Several compounds displayed a high antimycobacterial activity and the three isoniazid analogue derivatives 8a-c exhibited a MIC range of 0.

View Article and Find Full Text PDF

Among several potential applications, sigma receptors (σRs) can be used as neuroprotective agents, antiamnesic, antipsychotics and against other neurodegenerative disorders. On the other hands, antagonists of the GluN2b-subunit-containing-N-methyl-D-aspartate (NMDA) receptors are of major interest for the same purpose, being this subunit expressed in specific areas of the central nervous system and responsible for the excitatory regulation of nerve cells. Under these premises, we have synthesized and biologically tested novel hybrid derivatives obtained from the combination of phenyloxadiazolone and dihydroquinolinone scaffolds with different amine moieties, peculiar of σ2R ligands.

View Article and Find Full Text PDF

Background: Superficial wounds that require suturing are often the reason children visit the Paediatric Emergency Department. Suturing is usually accompanied by perilesional administration of lidocaine, a local anaesthetic drug that improves pain tolerance. In paediatric patients, this approach has a low compliance because lidocaine has to be injected, which in children generates fear and anxiety, a sterile anaesthetic gel could improve the child compliance.

View Article and Find Full Text PDF

Background: Mycobacterium Tuberculosis (Mtb) is the causative pathogen of Tuberculosis (TB) and outbreaks are more common among immunosuppressed persons infected with HIV. The current treatment regimens are lengthy and toxic, yet the therapy has remained unchanged for many decades, so there is a need to find new structures with selective mechanism of action. Moreover, the increased incidence of severe disseminated infections produced by undiagnosed Multidrug-resistant (MDR), worsen clinical treatment and contribute the spread of the disease.

View Article and Find Full Text PDF

The sigma receptor (σR) family has been considered mysterious for a long time. In fact, the σ2R subtype has been cloned only recently, revealing its identity as TMEM97, a NPC1-binding protein involved in cholesterol biosynthesis and implicated in the pathogenesis of cancer and neurologic disorders. With the aim of developing new chemical entities gifted with σR affinity, herein we report the design and synthesis of new piperidine-based alkylacetamide derivatives with mixed affinity towards both σ1 and σ2R subtypes.

View Article and Find Full Text PDF

In this work we applied a blend of computational and synthetic techniques with the aim to design, synthesize, and characterize new σ1 receptor (σ1R) ligands. Starting from the structure of previously reported, high-affinity benzoxazolone-based σ1 ligands, the three-dimensional homology model of the σ1R was exploited for retrieving the molecular determinants to fulfill the optimal pharmacophore requirements. Accordingly, the benzoxazolone moiety was replaced by other heterocyclic scaffolds, the relevant conformational space in the σ1R binding cavity was explored, and the effect on σ1R binding affinity was ultimately assessed.

View Article and Find Full Text PDF

N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains.

View Article and Find Full Text PDF

We report the design, synthesis and binding evaluation against σ1 and σ2 receptors of a series of new piperidine-4-carboxamide derivatives variously substituted on the amide nitrogen atom. Specifically, we assessed the effects exerted on σ receptor affinity by substituting the N-benzylcarboxamide group present on a series of compounds previously synthesized in our laboratory with different cyclic or linear moieties. The synthesized compounds 2a-o were tested to estimate their affinity and selectivity toward σ1 and σ2 receptors.

View Article and Find Full Text PDF

We describe here the synthesis and the binding interaction with σ1 and σ2 receptors of a series of new arylcarboxamide derivatives variously substituted on the aromatic portions. Maintaining a partial scaffold of a series of compounds previously synthesized by us, we evaluate the effect of the substitution on σ binding. The synthesized compounds have been tested to estimate their affinity and selectivity toward σ1 and σ2 receptors.

View Article and Find Full Text PDF

Originally considered an enigmatic polypeptide, the σ(1) receptor has recently been identified as a unique ligand-regulated protein. Many studies have shown the potential of σ(1) receptor ligands for the treatment of various diseases of the central nervous system (CNS); nevertheless, almost no information about the 3D structure of the receptor and/or the possible modes of interaction of the σ(1) protein with its ligands have been unveiled so far. With the present work we validated our σ(1) 3D homology model and assessed its reliability as a platform for σ(1) ligand structure-based drug design.

View Article and Find Full Text PDF

This study presents for the first time the 3D model of the σ1 receptor protein as obtained from homology modeling techniques, shows the applicability of this structure to docking-based virtual screening, defines a computational strategy to optimize the results based on a combination of 3D pharmacophore-based docking and MM/PBSA free energy of binding scoring, and provides evidence that these in silico models and recipes are powerful tools on which virtual screening of new σ1 ligands can be based. In particular, the validation of the applicability of docking-based virtual screening to homology models is of utmost importance, since no crystal structure is available to date for the σ1 receptor, and this missing information still constitutes a major hurdle for a rational ligand design for this important protein target.

View Article and Find Full Text PDF

In this work we developed a 3D-pharmacophore model for sigma(2) receptor based on 19 benzooxazolone derivatives. The best 3D-pharmacophore hypothesis, consisting of five features: a positive ionizable, a hydrogen bond acceptor, a hydrophobic aromatic, a hydrophobic aliphatic, and a generic hydrophobic provided a 3D-QSAR model with a correlation coefficient of 0.97 and a RMSD of 0.

View Article and Find Full Text PDF

In order to investigate the molecular features involved in sigma receptors (sigma-Rs) binding, new compounds based on arylalkylaminoalcoholic, arylalkenyl- and arylalkylaminic scaffolds were synthesized and their affinity towards sigma(1)- and sigma(2)-Rs subtypes was evaluated. The most promising compounds were also screened for their affinity at micro-opioid, delta-opioid and kappa-opioid receptors. Biological results are herein presented and discussed.

View Article and Find Full Text PDF

2-Aryl-3-(1H-imidazol-1-yl and 1H-1,2,4-triazol-1-yl)-1H-indole derivatives were synthesized and tested for their in-vitro antifungal and antimycobacterial activities. These indole derivatives were devoid of antifungal activity against the tested strains of Candida spp. Yet, they exhibited an interesting antitubercular activity against Mycobacterium tuberculosis reference strain H(37)Rv.

View Article and Find Full Text PDF

Novel benzo[d]oxazol-2(3H)-one derivatives were designed and synthesized, and their affinities against sigma receptors were evaluated. On the basis of 31 compounds, a three-dimensional pharmacophore model for the sigma(1) receptor binding site was developed using the Catalyst 4.9 software package.

View Article and Find Full Text PDF