Publications by authors named "Daniele Tavernari"

Introduction: Epidermal growth factor receptor (EGFR) mutations are key oncogenic drivers in lung adenocarcinoma (LUAD), predominantly affecting Asian, non-smoking, and female populations. While common mutations, such as exon 19 deletions and L858R, respond well to tyrosine kinase inhibitors (TKIs), uncommon EGFR mutations and compound variants exhibit variable treatment responses. This study aims to compare clinical characteristics and molecular profiles of patients with common, uncommon, and compound EGFR mutations, assessing their implications for therapy outcomes.

View Article and Find Full Text PDF

The efficacy of anti-cancer therapies depends on the genomic composition of the tumor, its microenvironment, spatial organization, and intra-tumor heterogeneity. B-cell lymphomas are a heterogeneous group of tumors emerging from B-cells at different stages of differentiation and exhibiting tumor-specific interactions with the tumor microenvironment. Thus, the effect of drug treatments can be influenced by the tumor composition and functional interactions among immune cells.

View Article and Find Full Text PDF

Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas.

View Article and Find Full Text PDF

Mitochondrial respiration extends beyond ATP generation, with the organelle participating in many cellular and physiological processes. Parallel changes in components of the mitochondrial electron transfer system with respiration render it an appropriate hub for coordinating cellular adaption to changes in oxygen levels. How changes in respiration under functional hypoxia (i.

View Article and Find Full Text PDF

There are significant commonalities among several pathologies involving fibroblasts, ranging from auto-immune diseases to fibrosis and cancer. Early steps in cancer development and progression are closely linked to fibroblast senescence and transformation into tumor-promoting cancer-associated fibroblasts (CAFs), suppressed by the androgen receptor (AR). Here, we identify ANKRD1 as a mesenchymal-specific transcriptional coregulator under direct AR negative control in human dermal fibroblasts (HDFs) and a key driver of CAF conversion, independent of cellular senescence.

View Article and Find Full Text PDF

Tissues are organized in cellular niches, the composition and interactions of which can be investigated using spatial omics technologies. However, systematic analyses of tissue composition are challenged by the scale and diversity of the data. Here we present CellCharter, an algorithmic framework to identify, characterize, and compare cellular niches in spatially resolved datasets.

View Article and Find Full Text PDF
Article Synopsis
  • HPV infections are a major cause of cervical cancer, often integrating their DNA into the host genome, which affects gene regulation and chromatin structure.
  • Research shows that HPV integration occurs more frequently in active chromatin regions, leading to increased expression of nearby genes, particularly within specific chromatin domains known as topologically associating domains (TADs).
  • Some TADs exhibit consistent HPV integrations that correlate with the overexpression of oncogenes like MYC and ERBB2, suggesting that HPV may promote cancer progression through complex interactions within the genome.
View Article and Find Full Text PDF

Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS).

View Article and Find Full Text PDF

Chromatin folding in the 3D space of the nucleus can be explored through high-throughput chromosome conformation capture (Hi-C) approaches. These experiments quantify the number of interactions between any pair of genomic loci in the genome and, thus, allow building genome-scale maps of intra- and inter-chromosomal contacts (contact maps). Statistical and algorithmic analyses of Hi-C data consist in extracting information from these contact maps.

View Article and Find Full Text PDF

Background: Spatial interactions and insulation of chromatin regions are associated with transcriptional regulation. Domains of frequent chromatin contacts are proposed as functional units, favoring and delimiting gene regulatory interactions. However, contrasting evidence supports the association between chromatin domains and transcription.

View Article and Find Full Text PDF

In cancer cells, enhancer hijacking mediated by chromosomal alterations and/or increased deposition of acetylated histone H3 lysine 27 (H3K27ac) can support oncogene expression. However, how the chromatin conformation of enhancer-promoter interactions is affected by these events is unclear. In the present study, by comparing chromatin structure and H3K27ac levels in normal and lymphoma B cells, we show that enhancer-promoter-interacting regions assume different conformations according to the local abundance of H3K27ac.

View Article and Find Full Text PDF

Chromatin compartmentalization reflects biological activity. However, inference of chromatin sub-compartments and compartment domains from chromosome conformation capture (Hi-C) experiments is limited by data resolution. As a result, these have been characterized only in a few cell types and systematic comparisons across multiple tissues and conditions are missing.

View Article and Find Full Text PDF

Cancer evolution determines molecular and morphologic intratumor heterogeneity and challenges the design of effective treatments. In lung adenocarcinoma, disease progression and prognosis are associated with the appearance of morphologically diverse tumor regions, termed histologic patterns. However, the link between molecular and histologic features remains elusive.

View Article and Find Full Text PDF

Melanoma susceptibility differs significantly in male versus female populations. Low levels of androgen receptor (AR) in melanocytes of the two sexes are accompanied by heterogeneous expression at various stages of the disease. Irrespective of expression levels, genetic and pharmacological suppression of AR activity in melanoma cells blunts proliferation and induces senescence, while increased AR expression or activation exert opposite effects.

View Article and Find Full Text PDF

Cancer cells retain genomic alterations that provide a selective advantage. The prediction and validation of advantageous alterations are major challenges in cancer genomics. Moreover, it is crucial to understand how the coexistence of specific alterations alters response to genetic and therapeutic perturbations.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes.

View Article and Find Full Text PDF

Chromatin is organized into topologically associating domains (TADs) enriched in distinct histone marks. In cancer, gain-of-function mutations in the gene encoding the enhancer of zeste homolog 2 protein (EZH2) lead to a genome-wide increase in histone-3 Lys27 trimethylation (H3K27me3) associated with transcriptional repression. However, the effects of these epigenetic changes on the structure and function of chromatin domains have not been explored.

View Article and Find Full Text PDF

Background: Chromatin folding gives rise to structural elements among which are clusters of densely interacting DNA regions termed topologically associating domains (TADs). TADs have been characterized across multiple species, tissue types, and differentiation stages, sometimes in association with regulation of biological functions. The reliability and reproducibility of these findings are intrinsically related with the correct identification of these domains from high-throughput chromatin conformation capture (Hi-C) experiments.

View Article and Find Full Text PDF

Genomic instability is a major driver of intra-tumor heterogeneity. However, unstable genomes often exhibit different molecular and clinical phenotypes, which are associated with distinct mutational processes. Here, we algorithmically inferred the clonal phylogenies of ~6,000 human tumors from 32 tumor types to explore how intra-tumor heterogeneity depends on different implementations of genomic instability.

View Article and Find Full Text PDF

In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response.

View Article and Find Full Text PDF

Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear.

View Article and Find Full Text PDF