Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.
View Article and Find Full Text PDFOptoelectronic and spinoptronic technologies benefit from flexible and tunable coherent light sources combining the best properties of nano- and material-engineering to achieve favorable properties such as chiral lasing and low threshold nonlinearities. In this work we demonstrate an electrically wavelength- and polarization-tunable room temperature polariton laser due to emerging photonic spin-orbit coupling. For this purpose, we design an optical cavity filled with both birefringent nematic liquid crystal and an inorganic perovskite.
View Article and Find Full Text PDFTransition-metal dichalcogenide monolayers possess large exciton binding energy and a robust valley degree of freedom, making them a viable platform for the development of spintronic devices capable of operating at room temperature. The development of such monolayer TMD-based spintronic devices requires strong spin-dependent interactions and effective spin transport. This can be achieved by employing exciton-polaritons.
View Article and Find Full Text PDFPerovskite crystals-with their exceptional nonlinear optical properties, lasing and waveguiding capabilities-offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton-polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures.
View Article and Find Full Text PDFThe realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems.
View Article and Find Full Text PDFRoom temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method.
View Article and Find Full Text PDFEnergy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, facilitating wide photonic applications. Two-dimensional (2D) semiconductors provide unique opportunities for exploring novel energy transfer mechanisms in the atomic-scale limit. Herein, we have designed a planar optical microcavity-confined MoS/hBN/WS heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode.
View Article and Find Full Text PDFSpectra of low-lying elementary excitations are critical to characterize properties of bosonic quantum fluids. Usually these spectra are difficult to observe, due to low occupation of non-condensate states compared to the ground state. Recently, low-threshold Bose-Einstein condensation was realised in a symmetry-protected bound state in the continuum, at a saddle point, thanks to coupling of this electromagnetic resonance to semiconductor excitons.
View Article and Find Full Text PDFExciton-polaritons derived from the strong light-matter interaction of an optical bound state in the continuum with an excitonic resonance can inherit an ultralong radiative lifetime and significant nonlinearities, but their realization in two-dimensional semiconductors remains challenging at room temperature. Here we show strong light-matter interaction enhancement and large exciton-polariton nonlinearities at room temperature by coupling monolayer tungsten disulfide excitons to a topologically protected bound state in the continuum moulded by a one-dimensional photonic crystal, and optimizing for the electric-field strength at the monolayer position through Bloch surface wave confinement. By a structured optimization approach, the coupling with the active material is maximized here in a fully open architecture, allowing to achieve a 100 meV photonic bandgap with the bound state in the continuum in a local energy minimum and a Rabi splitting of 70 meV, which results in very high cooperativity.
View Article and Find Full Text PDFRhenium disulfide belongs to group VII transition metal dichalcogenides (TMDs) with attractive properties such as exceptionally high refractive index and remarkable oscillator strength, large in-plane birefringence, and good chemical stability. Unlike most other TMDs, the peculiar optical properties of rhenium disulfide persist from bulk to the monolayer, making this material potentially suitable for applications in optical devices. In this work, we demonstrate with unprecedented clarity the strong coupling between cavity modes and excited states, which results in a strong polariton interaction, showing the interest of these materials as a solid-state counterpart of Rydberg atomic systems.
View Article and Find Full Text PDFThe field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality.
View Article and Find Full Text PDFParametric nonlinear optical processes are at the heart of nonlinear optics underpinning the central role in the generation of entangled photons as well as the realization of coherent optical sources. Exciton-polaritons are capable to sustain parametric scattering at extremely low threshold, offering a readily accessible platform to study bosonic fluids. Recently, two-dimensional transition-metal dichalcogenides (TMDs) have attracted great attention in strong light-matter interactions due to robust excitonic transitions and unique spin-valley degrees of freedom.
View Article and Find Full Text PDFQuantum vortices are the analogue of classical vortices in optics, Bose-Einstein condensates, superfluids and superconductors, where they provide the elementary mode of rotation and orbital angular momentum. While they mediate important pair interactions and phase transitions in nonlinear fluids, their linear dynamics is useful for the shaping of complex light, as well as for topological entities in multi-component systems, such as full Bloch beams. Here, setting a quantum vortex into directional motion in an open-dissipative fluid of microcavity polaritons, we observe the self-splitting of the packet, leading to the trembling movement of its center of mass, whereas the vortex core undergoes ultrafast spiraling along diverging and converging circles, in a sub-picosecond precessing fashion.
View Article and Find Full Text PDFUltrafast all-optical switches and integrated circuits call for giant optical nonlinearity to minimize energy consumption and footprint. Exciton polaritons underpin intrinsic strong nonlinear interactions and high-speed propagation in solids, thus affording an intriguing platform for all-optical devices. However, semiconductors sustaining stable exciton polaritons at room temperature usually exhibit restricted nonlinearity and/or propagation properties.
View Article and Find Full Text PDFThe engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion.
View Article and Find Full Text PDFHybrid perovskites are among the most promising materials for optoelectronic applications. Their 2D crystalline form is even more interesting since the alternating inorganic and organic layers naturally forge a multiple quantum-well structure, leading to the formation of stable excitonic resonances. Nevertheless, a controlled modulation of the quantum well width, which is defined by the number of inorganic layers (n) between two organic ones, is not trivial and represents the main synthetic challenge in the field.
View Article and Find Full Text PDFIf a quantum fluid is driven with enough angular momentum, at equilibrium the ground state of the system is given by a lattice of quantized vortices whose density is prescribed by the quantization of circulation. We report on the first experimental study of the Feynman-Onsager relation in a nonequilibrium polariton fluid, free to expand and rotate. Upon initially imprinting a lattice of vortices in the quantum fluid, we track the vortex core positions on picosecond timescales.
View Article and Find Full Text PDFLead-halide perovskites are generally excellent light emitters and can have larger exciton binding energies than thermal energy at room temperature, exhibiting great promise for room-temperature exciton-polaritonics. Rapid progress has been made recently, although challenges and mysteries remain in lead-halide perovskite semiconductors to push polaritons to room-temperature operation. In this Perspective, we discuss fundamental aspects of perovskite semiconductors for exciton-polaritons and review the recent rapid experimental advances using lead-halide perovskites for room-temperature polaritonics, including the experimental realization of strong light-matter interaction using various types of microcavities as well as reaching the polariton condensation regime in planar microcavities and lattices.
View Article and Find Full Text PDFIn ultrafast multimode lasers, mode locking is implemented by means of saturable absorbers or modulators, allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random lasers, this has never been demonstrated so far.
View Article and Find Full Text PDFExciton-polaritons, hybrid light-matter bosonic quasiparticles, can condense into a single quantum state, i.e., forming a polariton Bose-Einstein condensate (BEC), which represents a crucial step for the development of nanophotonic technology.
View Article and Find Full Text PDFHybrid organic-inorganic perovskites are very promising semiconductors for many optoelectronic applications, although their extensive use is limited by their poor stability under environmental conditions. In this work, we synthesize two-dimensional perovskite single crystals and investigate their optical and structural evolution under continuous light irradiation. We found that the hydrophobic nature of the fluorinated component, together with the absence of grain boundary defects, lead to improved material stability thanks to the creation of a robust barrier that preserve the crystalline structure, hindering photo-degradation processes usually promoted by oxygen and moisture.
View Article and Find Full Text PDFThe rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain.
View Article and Find Full Text PDF