Publications by authors named "Daniele Perondi"

Graphene nanoplatelets (UGZ-1004) are emerging as a promising biomaterial in regenerative medicine. This study comprehensively evaluates UGZ-1004, focusing on its physical properties, cytotoxicity, intracellular interactions, and, notably, its effects on mesenchymal stem cells (MSCs). UGZ-1004 was characterized by lateral dimensions and layer counts consistent with ISO standards and demonstrated a high carbon purity of 0.

View Article and Find Full Text PDF

Graphene-based materials have increasingly attracted attention in recent years. It is a material is recognized worldwide due to its numerous applications in several sectors. However, graphene production involves several challenges: scalability, high costs, and high-quality production.

View Article and Find Full Text PDF

In this work, different carbonaceous materials based on floated sludge from a poultry industry wastewater treatment plant (PI-WTP) were synthesized. These materials were characterized and investigated in methylene blue dye (MB) adsorption. The influences of the initial pH solution, adsorbent dosage, kinetics, equilibrium, and thermodynamics were evaluated in the adsorption experiments.

View Article and Find Full Text PDF

Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes.

View Article and Find Full Text PDF

This work valorizes butiá pomace () using pyrolysis to prepare CO adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized.

View Article and Find Full Text PDF

A route based on pyrolysis and physical activation with HO and CO was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new route as adsorbents for Cu(II) ions.

View Article and Find Full Text PDF

Unlabelled: Based on cleaner production and circular economy concepts, chars were produced through thermochemical conversion of grape bagasse and then used as adsorbents to uptake Cu(II) from aqueous media since Cu(II) is a common element found in fungicides to treat grapevines. The grape bagasse and char characteristics were investigated through several analytical techniques (TGA, SEM, XRD, FTIR, and BET). Three chars were obtained using different pyrolysis temperatures: 700, 800, and 900 °C.

View Article and Find Full Text PDF

Schizolobium parahyba species can be found in all of South America, producing several residues that can be a major opportunity to develop activated carbon. This work presents the investigation regarding the development of a high specific surface activated carbon (981.55 m g) and its application in the adsorption of ketoprofen from the aqueous media.

View Article and Find Full Text PDF

In this work, chitosan/alginate composites were developed by the gelation method with the addition of different amounts of activated carbon produced from tannery waste (ACTW). The performance of these composites was verified through the adsorption of the textile dye Remazol Brilliant Blue R (RBBR). A synergistic effect was observed by the addition of ACTW; with a specific surface area up to 45.

View Article and Find Full Text PDF

The objective of this work was to characterize and study the behavior of the adsorption process of cellulose/biochar cryogels through isotherm models and adsorption kinetics. The cryogels were produced from a cellulose suspension obtained by mechanical fibrillation of 0.75 and 1.

View Article and Find Full Text PDF

Pyrolysis of malt bagasse was carried out to obtain simultaneously a mesoporous biochar and an oil fraction rich in palmitic acid. The best result for biochar production was at 500 °C with holding time of 10 min. The yields of biochar and pyrolytic oil in this condition were, 29.

View Article and Find Full Text PDF

Ultrasound-assisted approach was successfully applied for the synthesis of mayenite from calcium and aluminum hydroxides and then subsequently impregnated with Ni by the wet impregnation method. The synthesis was performed with a 13 mm probe-type ultrasound, operating under an acoustic power of 30.5 W and a frequency of 20 kHz.

View Article and Find Full Text PDF

A high quality activated carbon was developed from biological sludge of a beverage wastewater treatment plant (BWTP). The material was characterized and its adsorption potential to remove Allura Red AC and Crystal Violet dyes from aqueous media was verified. The ACBS (activated carbon from beverage sludge) revealed mesoporous features, presenting average pore diameter of 6.

View Article and Find Full Text PDF

An alternative activated biochar was developed from barley malt bagasse (BMB) through pyrolysis followed by CO activation. The materials BMB, biochar and activated biochar (CO-biochar) were characterized and tested as adsorbents for the removal of methylene blue (MB) from aqueous solutions. Adsorption kinetics, equilibrium and thermodynamics were studied.

View Article and Find Full Text PDF

In this work, the adsorption of Acid Black 210 (AB210) and Acid Red 357 (AR357) onto activated carbon prepared from leather shaving wastes (ACLW) was investigated. The activated carbon presented a surface area of 800.4 m²/g with an average pore size of 1.

View Article and Find Full Text PDF