Inactivation of the retinoblastoma (Rb) tumor suppressor protein is widespread in human cancers. Inactivation of Rb is thought to be initiated by association with Raf-1 (C-Raf) kinase, and here we determined how RRD-251, a disruptor of the Rb-Raf-1 interaction, affects pancreatic tumor progression. Assessment of phospho-Rb levels in resected human pancreatic tumor specimens by immunohistochemistry (n = 95) showed that increased Rb phosphorylation correlated with increasing grade of resected human pancreatic adenocarcinomas (P = 0.
View Article and Find Full Text PDFInterferon-α2b (IFN-α2b) is used to treat melanoma but there is a need to improve its efficacy. IFN-α2b signaling requires STAT1/STAT2 tyrosine phosphorylation and is subject to negative regulation by phosphatases. In this study, we determined whether inhibition of the protein tyrosine phosphatase Shp2 could enhance IFN-α2b responses in human melanoma cells.
View Article and Find Full Text PDFBiochem Pharmacol
September 2010
The protein tyrosine phosphatase (PTP) Shp2 (PTPN11) is an attractive target for anticancer drug discovery because it mediates growth factor signaling and its gain-of-function mutants are causally linked to leukemias. We previously synthesized SPI-112 from a lead compound of Shp2 inhibitor, NSC-117199. In this study, we demonstrated that SPI-112 bound to Shp2 by surface plasmon resonance (SPR) and displayed competitive inhibitor kinetics to Shp2.
View Article and Find Full Text PDFClusterin (CLU), in its cytoplasmic form, is abundant in many advanced cancers and has been established to be cytoprotective against chemotherapeutic agents including docetaxel. However, little is known of the mechanism of its induction. Here, we provide evidence that AKT plays a critical role in upregulating cytoplasmic/secretory sCLU, which is responsible for docetaxel resistance.
View Article and Find Full Text PDFAlthough it is well established that cyclin-dependent kinases phosphorylate and inactivate Rb, the Raf-1 kinase physically interacts with Rb and initiates the phosphorylation cascade early in the cell cycle. We have identified an orally active small molecule, Rb/Raf-1 disruptor 251 (RRD-251), that potently and selectively disrupts the Rb/Raf-1 but not Rb/E2F, Rb/prohibitin, Rb/cyclin E, and Rb/HDAC binding. The selective inhibition of Rb/Raf-1 binding suppressed the ability of Rb to recruit Raf-1 to proliferative promoters and inhibited E2F1-dependent transcriptional activity.
View Article and Find Full Text PDFAllylation of aromatic and heteroaromatic aldehydes 1a-k with allyltrichlorosilane 2 can be catalyzed by the new heterobidentate, terpene-derived bipyridine N-monoxides 4, 6a,b, and 8-11 (=10 mol %) to afford (S)-(-)-3 with high enantioselectivities (=99% ee). The stereochemical outcome has been found to be controlled by the axial chirality of the catalyst, which in turn is determined by the central chirality of the annulated terpene units. Solvent effects on the conversion and the level of asymmetric induction have been elucidated, and MeCN has been identified as the optimal solvent for these catalysts.
View Article and Find Full Text PDFA series of modular bipyridine-type ligands 1 and 3-9 has been synthesized via a de novo construction of the pyridine nucleus. The chiral moieties of these ligands originate from the isoprenoid chiral pool, namely, beta-pinene (10 --> 1), 3-carene (14 --> 3 and 5), 2-carene (28 --> 4), alpha-pinene (43 --> 6-8), and dehydropregnenolone acetate (48 --> 9), respectively. Copper(I) complexes, derived from these ligands and (TfO)(2)Cu (1 mol %) upon an in situ reduction with phenylhydrazine, exhibit good enantioselectivity (up to 82% ee) and unusually high reaction rate (typicaly 30 min at room temperature) in allylic oxidation of cyclic olefins (52 --> 53).
View Article and Find Full Text PDF[reaction: see text] The Sakurai-Hosomi-type allylation of aromatic and heteroaromatic aldehydes can be catalyzed by the new heterobidenate bipyridine monoxide PINDOX with high enantioselectivities. The sterochemical outcome is mainly controlled by the axial chirality in PINDOX, which in turn is determined by the annulated terpene units.
View Article and Find Full Text PDF