Publications by authors named "Daniele Pergolesi"

Nanoscale thin films are widely implemented across a plethora of technological and scientific areas, and form the basis for many advancements that have driven human progress, owing to the high degree of functional tunability based on the chemical composition. Pulsed laser deposition is one of the multiple physical vapour deposition routes to fabricate thin films, employing laser energy to eject material from a target in the form of a plasma. A substrate, commonly a single-crystal oxide, is placed in the path of the plume and acts as a template for the arriving species from the target to coalesce and self-assemble into a thin film.

View Article and Find Full Text PDF

The growth of crystalline Li-based oxide thin films on silicon substrates is essential for the integration of next-generation solid-state lithionic and electronic devices including on-chip microbatteries, memristors, and sensors. However, growing crystalline oxides directly on silicon typically requires high temperatures and oxygen partial pressures, which leads to the formation of undesired chemical species at the interface compromising the crystal quality of the films. In this work, we employ a 2 nm gamma-alumina (γ-AlO) buffer layer on Si substrates in order to grow crystalline thin films of LiTiO (LTO), a well-known active material for lithium-ion batteries.

View Article and Find Full Text PDF

We report results from visible and UV Raman spectroscopy studies of the phonon spectra of a polycrystalline sample of the prototypical perovskite type oxide BaZrOand a 500 nm thick film of its Y-doped, proton conducting, counterpart BaZrYO. Analysis of the Raman spectra measured using different excitation energies (between 3.44 eV and 5.

View Article and Find Full Text PDF

The fabrication and characterization of photoanodes based on black-Si (b-Si) are presented using a photoelectrochemical cell in NaOH solution. B-Si was fabricated by maskless dry plasma etching and was conformally coated by tens-of-nm of TiO using atomic layer deposition (ALD) with a top layer of CoO x cocatalyst deposited by pulsed laser deposition (PLD). Low reflectivity R < 5 % of b-Si over the entire visible and near-IR ( λ < 2   μ m) spectral range was favorable for the better absorption of light, while an increased surface area facilitated larger current densities.

View Article and Find Full Text PDF

LaTiON oxynitride thin films are employed to study the surface modifications at the solid-liquid interface that occur during photoelectrocatalytic water splitting. Neutron reflectometry and grazing incidence x-ray absorption spectroscopy were utilised to distinguish between the surface and bulk signals, with a surface sensitivity of 3 nm. Here we show, contrary to what is typically assumed, that the A cations are active sites that undergo oxidation at the surface as a consequence of the water splitting process.

View Article and Find Full Text PDF

This work reveals that photoanodes based on TiNb O (TNO) powder show remarkable water-oxidation properties including nearly ideal charge-transfer and charge-injection efficiencies. Furthermore, using a simplified photoanode construction and carefully surveying the structural and morphological characteristics of oriented and polycrystalline thin films and powder-based samples revealed that the water-splitting kinetics of TNO is negligibly effected by surface morphology; instead, internal grain boundaries likely play a driving role. The current powder-based TNO photoanodes exhibit ideal water-oxidation kinetics and oxidize water at minimal applied biases under illumination; consequently, TNO exhibits an early onset photocurrent voltage (0.

View Article and Find Full Text PDF

Mixed oxides derived from the perovskite structure by combination of A- and B-site elements and by partial substitution of oxygen provide an immense playground of physico-chemical properties. Here, we give an account of our own research conducted at the Paul Scherrer Institute on perovskite-type oxides and oxynitrides used in electrochemical, photo(electro)chemical and catalytic processes aimed at facing energy relevant issues.

View Article and Find Full Text PDF

Multilayered heterostructures of CeSmO and YZrO of a high crystallographic quality were fabricated on (001)-oriented MgO single crystal substrates. Keeping the total thickness of the heterostructures constant, the number of ceria-zirconia bilayers was increased while reducing the thickness of each layer. At each interface Ce was found primarily in the reduced, 3+ oxidation state in a layer extending about 2 nm from the interface.

View Article and Find Full Text PDF

The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO, a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain.

View Article and Find Full Text PDF

The nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible-light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splitting. Oxynitrides typically show a different crystal structure compared to the pristine oxide material. As the band gap is correlated to both the chemical composition and the crystal structure, it is not trivial to distinguish which modifications of the electronic structure induced by the nitrogen substitution are related to compositional and/or structural effects.

View Article and Find Full Text PDF

We performed a comparative study on the photoelectrochemical performance of LaTaON loaded with NiO, NiFeO, CoO and IrO as cocatalysts. Ni-based oxides lead to the highest improvement on the photoelectrochemical performance, while CoO and IrO also enhance the performance though to a lower extent, but they simultaneously introduce more pseudocapacitive current thus resulting in an inefficient utilization of the photo-generated holes. Repetitive voltage cycling between 1.

View Article and Find Full Text PDF

Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films.

View Article and Find Full Text PDF

Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth.

View Article and Find Full Text PDF

Biaxially textured epitaxial thin-film heterostructures of ceria and 8 mol % yttria-stabilized zirconia (8YSZ) were grown using pulsed laser deposition (PLD) with the aim to unravel the effect of the interfacial conductivity on the charge transport properties. Five different samples were fabricated, keeping the total thickness constant (300 nm), but with a different number of heterointerfaces (between 4 and 60). To remove any potential contribution of the deposition substrate to the total conductivity, the heterostructures were grown on (001)-oriented MgO single-crystalline wafers.

View Article and Find Full Text PDF

SrTiO(3)/LaAlO(3) interfaces show an unprecedented photoconductivity effect that is persistent even at room temperature and giant as it gives rise to a conductivity increase of about 5 orders of magnitude at room temperature. The persistent photoconductivity effects play a paramount role in the still controversial intrinsic behavior of the SrTiO(3)/LaAlO(3) interfaces, as even a limited exposure to visible light is able to strongly modify the electrical transport properties of the interface even above room temperature, while only an appropriate thermal treatment in a dark environment can completely suppress the persistent photoconductivity effect unveiling the intrinsic conduction mechanism of the interface. Moreover, our study demonstrates that the origin of the high conductivity, revealed at the STO/LAO interface at room temperature, is purely electronic.

View Article and Find Full Text PDF

The need for reducing the solid oxide fuel cell (SOFC) operating temperature below 600 °C is imposed by cost reduction, which is essential for widespread SOFC use, but might also disclose new applications. To this aim, high-temperature proton-conducting (HTPC) oxides have gained widespread interest as electrolyte materials alternative to oxygen-ion conductors. This Progress Report describes recent developments in electrolyte, anode, and cathode materials for protonic SOFCs, addressing the issue of chemical stability, processability, and good power performance below 600 °C.

View Article and Find Full Text PDF

Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces.

View Article and Find Full Text PDF

Reducing the operating temperature in the 500-750 °C range is needed for widespread use of solid oxide fuel cells (SOFCs). Proton-conducting oxides are gaining wide interest as electrolyte materials for this aim. We report the fabrication of BaZr(0.

View Article and Find Full Text PDF
Article Synopsis
  • High temperature proton conductor (HTPC) oxides are being researched as potential replacement electrolytes for solid oxide fuel cells (SOFCs) to enable lower operating temperatures (400-700 °C) and reduce costs.
  • There is a pressing need for effective electrodes that can minimize polarization losses at these lower temperatures to ensure the technology's feasibility.
  • This review discusses current anode and cathode materials used with HTPC oxide electrolytes and provides strategies to enhance the development of protonic SOFCs.
View Article and Find Full Text PDF

The increasing world population and the need to improve quality of life for a large percentage of human beings are the driving forces for the search for sustainable energy production systems, alternative to fossil fuel combustion. Among the various types of alternative energy production technologies, solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 °C) show the advantage of possible use both for stationary and mobile energy production. To reach the goal of reducing the SOFC operating temperature, proton-conducting oxides are gaining wide interest as electrolyte materials.

View Article and Find Full Text PDF