Actin-bundling Arabidopsis LIM proteins are subdivided into two subfamilies differing in their pH sensitivity. Widely-expressed WLIMs are active under low and high physiologically-relevant pH conditions, whereas pollen-enriched PLIMs are inactivated by pH values above 6.8.
View Article and Find Full Text PDFCrosslinking of actin filaments into bundles is essential for the assembly and stabilization of specific cytoskeletal structures. However, relatively little is known about the molecular mechanisms underlying actin bundle formation. The two LIM-domain-containing proteins define a novel and evolutionarily conserved family of actin-bundling proteins whose actin-binding and -crosslinking activities primarily rely on their LIM domains.
View Article and Find Full Text PDFThe two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution, suggesting that, in addition to their previously described roles in actin cytoskeleton organization, they participate in nuclear processes. Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters, we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA. Using both green fluorescent protein (GFP) fusion- and immunology-based strategies, we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton, the nucleus, and the nucleolus.
View Article and Find Full Text PDFThe 6th Benelux Bioinformatics Conference (BBC11) held in Luxembourg on 12 and 13 December 2011 attracted around 200 participants, including internationally-renowned guest speakers and more than 100 peer-reviewed submissions from 3 continents. Researchers from the public and private sectors convened at BBC11 to discuss advances and challenges in a wide spectrum of application areas. A key theme of the conference was the contribution of bioinformatics to enable and accelerate translational and clinical research.
View Article and Find Full Text PDFWe provide evidence that one of the 11 Arabidopsis actin-depolymerizing factors (ADFs), namely ADF9, does not display typical F-actin depolymerizing activity. Instead, ADF9 effectively stabilizes actin filaments in vitro and concomitantly bundles actin filaments with the highest efficiency under acidic conditions. Competition experiments show that ADF9 antagonizes ADF1 activity by reducing its ability to potentiate F-actin depolymerization.
View Article and Find Full Text PDFRecently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen.
View Article and Find Full Text PDFTight regulation of plant actin cytoskeleton organization and dynamics is crucial for numerous cellular processes including cell division, expansion and intracellular trafficking. Among the various actin regulatory proteins, actin-bundling proteins trigger the formation of bundles composed of several parallel actin filaments closely packed together. Actin bundles are present in virtually all plant cells, but their biological roles have rarely been addressed directly.
View Article and Find Full Text PDFThe plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs).
View Article and Find Full Text PDFABI1, a protein phosphatase 2C, is a key component of ABA signal transduction in Arabidopsis that regulates numerous ABA responses, such as stomatal closure, seed germination and inhibition of vegetative growth. The abi1-1 mutation, so far the only characterized dominant allele for ABI1, impairs ABA responsitivity in both seeds and vegetative tissues. The site of action of ABI1 is unknown.
View Article and Find Full Text PDF