Publications by authors named "Daniele Modotto"

We report the experimental demonstration of efficient second-harmonic generation by splicing optically poled fiber segments. A device made from five segments each 20 cm-long exhibits, at a fundamental average power of 4.2 mW, a maximum increase of 5.

View Article and Find Full Text PDF

We experimentally study polarization dynamics of Kerr beam self-cleaning in a graded-index multimode optical fiber. We show that spatial beam cleaning is accompanied by nonlinear polarization rotation and a significant increase of the degree of linear polarization.

View Article and Find Full Text PDF

Integrated nonlinear metasurfaces leading to high-efficiency optical second harmonic generation (SHG) are highly desirable for optical sensing, imaging, and quantum photonic systems. Compared to traditional metal-only metasurfaces, their hybrid counterparts, where a noncentrosymmetric nonlinear photonic material is incorporated in the near-field of a metasurface, can significantly boost SHG efficiency. However, it is difficult to integrate such devices on-chip due to material incompatibilities, thickness scaling challenges, and the narrow band gaps of nonlinear optical materials.

View Article and Find Full Text PDF

Nonlinear interactions are commonly used to access to wavelengths not covered by standard laser systems. In particular, optical parametric amplification (OPA) is a powerful technique to produce broadly tunable light. However, common implementations of OPA suffer from a well-known trade-off, either achieving high efficiency for narrow spectra or inefficient conversion over a broad bandwidth.

View Article and Find Full Text PDF

We numerically study the mechanisms of frequency comb generation in the mid-infrared spectral region from cw-pumped silicon microring resonators. Coherent soliton comb generation may be obtained even for a pump with zero linear cavity detuning, through suitable control of the effective lifetime of free carriers from multiphoton absorption, which introduces a nonlinear cavity detuning via free-carrier dispersion. Conditions for optimal octave spanning Raman comb generation are also described.

View Article and Find Full Text PDF

We demonstrate an ultracompact optical filter based on two coupled high-index contrast GaAs photonic crystal (PhC) membranes. The PhC membranes consist of a square lattice of air holes and behave as a Fabry-Perot cavity whose reflectivity and transmissivity depend on the air gap between the two membranes. The normal-incidence reflectance measurements and the numerical simulation of reflection spectra show a high sensitivity to the geometrical parameters, such as the distance between the slabs, whose control would make the device suitable for a new class of tunable optical filters.

View Article and Find Full Text PDF

We describe the application of full-wave and semi-analytical numerical tools for the modeling of optical wire antennas, with the aim of providing novel guidelines for analysis and design. The concept of antenna impedance at optical frequencies is reviewed by means of finite-element simulations, whereas a surface-impedance integral equation is derived in order to perform an accurate and efficient calculation of the current distribution, and thereby to determine the equivalent-circuit parameters. These are introduced into simple circuits models, directly borrowed from radio frequency, which are applied in order to model the phenomena of enhanced field confinement at the feed gap and light scattering by optical antennas illuminated by plane waves.

View Article and Find Full Text PDF

We report the first observation of enhanced third-order nonlinear effects in AlGaAs nanowires. AlGaAs nanowaveguides with widths varying from 100 to 600nm were fabricated and characterized. Nonlinear phase shifts of approximately pi were experimentally observed at 1.

View Article and Find Full Text PDF

We report a systematic analysis of anomalous refractive effects at interfaces between two photonic crystal waveguide arrays. Discrete negative refraction can be easily predicted from the sign of the coupling coefficient between adjacent waveguides, regardless of handedness of propagation.

View Article and Find Full Text PDF

Light propagation in uniform arrays of photonic crystal waveguides is studied. We demonstrate that, in stark contrast to the case of conventional waveguide arrays, diffraction can be tailored both in magnitude and sign by varying only the spacing between adjacent waveguides. Diffraction management in ultracompact arrays of straight photonic crystal waveguides is demonstrated by solving Maxwell's equations through the time-domain finite-element method.

View Article and Find Full Text PDF