Publications by authors named "Daniele Licari"

Is it possible to convert highly specialized research in the field of computational spectroscopy into robust and user-friendly aids to experiments and industrial applications? What kind of tools should be created to increase the interactions between researchers with different backgrounds and push towards new frontiers in computational chemistry? The outstanding advances in computational spectroscopy and the wide availability of computational and analytical tools are paving the route toward the study of problems that were previously difficult or impossible to solve and enable the imagination of even more ambitious targets for fundamental and applied research. The combination of new computer- and data-centric technologies is transforming data analysis from an uncommon and retrospective practice into a proactive process of strategic decision and action. This paper starts from these premises and proposes a perspective for a new cyberinfrastructure aimed at integrating developments in theory, algorithms and software with new tools for workflow management, data mining and visualization.

View Article and Find Full Text PDF

The Virtual Multifrequency Spectrometer (VMS) is a tool that aims at integrating a wide range of computational and experimental spectroscopic techniques with the final goal of disclosing the static and dynamic physical-chemical properties "hidden" in molecular spectra. VMS is composed of two parts, namely, VMS-Comp, which provides access to the latest developments in the field of computational spectroscopy, and VMS-Draw, which provides a powerful graphical user interface (GUI) for an intuitive interpretation of theoretical outcomes and a direct comparison to experiment. In the present work, we introduce VMS-ROT, a new module of VMS that has been specifically designed to deal with rotational spectroscopy.

View Article and Find Full Text PDF

The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail.

View Article and Find Full Text PDF

We present the implementation of the solid state (SoS)NMR module for the simulation of several 1D and 2D NMR spectra of all the elements in the periodic table in the virtual multifrequency spectrometer (VMS). This module is fully integrated with the graphical user interface of VMS (VMS-Draw) [Licari et al., J.

View Article and Find Full Text PDF

This article presents the setup and implementation of a graphical user interface (VMS-Draw) for a virtual multifrequency spectrometer. Special attention is paid to ease of use, generality and robustness for a panel of spectroscopic techniques and quantum mechanical approaches. Depending on the kind of data to be analyzed, VMS-Draw produces different types of graphical representations, including two-dimensional or three-dimesional (3D) plots, bar charts, or heat maps.

View Article and Find Full Text PDF

An integrated computational approach allowed an unbiased analysis of optical and structural properties of alizarin-based pigments, which can be directly compared with experimental results. Madder lake pigments have been modeled by Mg(II)- and Al(III)-coordinated alizarin taking into account solvation and metal-linkage effects, responsible for colour modifications. Moreover, different environmental conditions have been analyzed for free alizarin, showing in all cases semi-quantitative agreement with experimental spectroscopic data (UV-VIS).

View Article and Find Full Text PDF

The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules.

View Article and Find Full Text PDF