Biochim Biophys Acta
August 2015
Patients with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiency commonly present liver dysfunction whose pathogenesis is unknown. We studied the effects of long-chain 3-hydroxylated fatty acids (LCHFA) that accumulate in LCHAD deficiency on liver bioenergetics using mitochondrial preparations from young rats. We provide strong evidence that 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, the monocarboxylic acids that are found at the highest tissue concentrations in this disorder, act as metabolic inhibitors and uncouplers of oxidative phosphorylation.
View Article and Find Full Text PDFEthylmalonic acid (EMA) accumulation occurs in various metabolic diseases with neurological manifestation, including short acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy (EE). Since pathophysiological mechanisms responsible for brain damage in these disorders are still poorly understood, we investigated the ex vivo effects of acute intrastriatal administration of EMA on important parameters of energy and redox homeostasis in striatum from young rats. We evaluated CO(2) production from glucose, glucose utilization and lactate production, as well as the activities of the citric acid cycle (CAC) enzymes, the electron transfer chain (ETC) complexes II-IV (oxidative phosphorylation, OXPHOS) and synaptic Na(+),K(+)-ATPase.
View Article and Find Full Text PDF