We use a real-space slave-rotor theory of the physics of topological Mott insulators, using the Kane-Mele-Hubbard model as an example, and show that a topological gap in the Green function zeros corresponds to a gap in the bulk spinon spectrum and implies a gapless band of edge zeros and a spinon edge mode. We then consider an interface between a topological Mott insulator and a conventional topological insulator showing how the spinon edge mode of the topological Mott insulator combines with the spin part of the conventional electron topological edge state, leaving a non-Fermi liquid edge mode described by a gapless propagating holon and gapped spinon state. Our work demonstrates the physical meaning of Green function zeros and shows that interfaces between conventional and Mott topological insulators are a rich source of new physics.
View Article and Find Full Text PDFRecent experiments have confirmed the presence of interlayer excitons in the ground state of transition metal dichalcogenide bilayers. The interlayer excitons are expected to show remarkable transport properties when they undergo Bose condensation. In this Letter, we demonstrate that quantum geometry of Bloch wave functions plays an important role in the phase stiffness of the interlayer exciton condensate.
View Article and Find Full Text PDFThe prediction and realization of the quantum anomalous Hall effect are often intimately connected to honeycomb lattices in which the sublattice degree of freedom plays a central role in the nontrivial topology. Two-dimensional Wigner crystals, on the other hand, form triangular lattices without sublattice degrees of freedom, resulting in a topologically trivial state. Here, we discuss the possibility of spontaneously formed honeycomb-lattice crystals that exhibit the quantum anomalous Hall effect.
View Article and Find Full Text PDFWe show that topological superconductivity may emerge upon doping of transition metal dichalcogenide heterobilayers above an integer-filling magnetic state of the topmost valence moiré band. The effective attraction between charge carriers is generated by an electric p-wave Feshbach resonance arising from interlayer excitonic physics and has a tunable strength, which may be large. Together with the low moiré carrier densities reachable by gating, this robust attraction enables access to the long-sought p-wave BEC-BCS transition.
View Article and Find Full Text PDFWe theoretically study the interplay between magnetism and a heavy Fermi liquid in the AB-stacked transition metal dichalcogenide bilayer system, MoTe/WSe, in the regime in which the layer supports localized magnetic moments coupled by interlayer electron tunneling to a weakly correlated band of itinerant electrons in the layer. We show that the interlayer electron transfer leads to a chiral Kondo exchange, with consequences including a strong dependence of the Kondo temperature on carrier concentration and anomalous Hall effect due to a topological hybridization gap. The theoretical model exhibits two phases, a small Fermi surface magnet and a large Fermi surface heavy Fermi liquid; at the mean-field level, the transition between them is first order.
View Article and Find Full Text PDFWe derive a general criterion for determining the onset of superradiant phase transition in electronic bands coupled to a cavity field, with possibly electron-electron interactions. For longitudinal superradiance in 2D or genuine 1D systems, we prove that it is always prevented, thereby extending existing no-go theorems. Instead, a superradiant phase transition can occur to a nonuniform transverse cavity field and we give specific examples in noninteracting models, either through Fermi surface nesting or parabolic band touching.
View Article and Find Full Text PDF