Purpose: Women with gestational trophoblastic tumors (GTT) resistant to single-agent chemotherapy receive alternative chemotherapy regimens, which, although effective, cause considerable toxicity. All GTT subtypes express programmed death-ligand 1 (PD-L1), and natural killer (NK) cells are involved in trophoblast immunosurveillance. Avelumab (anti-PD-L1) induces NK cell-mediated cytotoxicity.
View Article and Find Full Text PDFAlthough cytotoxic chemotherapy is the main therapeutic option to treat gastric cancer in the metastatic setting, molecular targeted agents have recently been introduced in an effort to improve survival outcomes which in average do not exceed 1 year. Trastuzumab and ramucirumab, antibodies directed against HER2 and VEGFR2, respectively, may provide clinical benefit for some patients. Results of clinical studies show that Asian patients have increased survival compared to Caucasian patients.
View Article and Find Full Text PDFBackground: Male breast cancer is a rare and less known disease. Therapeutic modalities affect survival. In Burkina Faso, male breast cancers are diagnosed in everyday practice, but the prognosis at short-, middle-, and long-term remains unknown.
View Article and Find Full Text PDFTranscription-coupled repair (TCR) plays a key role in the repair of DNA lesions induced by bulky adducts and is initiated when the elongating RNA polymerase II (Pol II) stalls at DNA lesions. This is accompanied by alterations in Pol II activity and stability. We have previously shown that the monofunctional adducts formed by irofulven (6-hydroxymethylacylfulvene) are exclusively recognized by TCR, without involvement of global genome repair (GGR), making irofulven a unique tool to characterize TCR-associated processes in vivo.
View Article and Find Full Text PDFChromatin structure plays a key role in most processes involving DNA metabolism. Chromatin modifications implicated in transcriptional regulation are relatively well characterized and are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, ubiquitylation, sumoylation, acetylation and methylation, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin.
View Article and Find Full Text PDFAdducts induced by the antitumor alkylator ecteinascidin 743 (ET-743, Yondelis, trabectedin) represent a unique challenge to the DNA repair machinery because no pathway examined to date is able to remove the ET adducts, whereas cells deficient in nucleotide excision repair show increased resistance. We here describe the processing of the initial ET adducts into cytotoxic lesions and characterize the influence of cellular repair pathways on this process. Our findings show that exposure of proliferating mammalian cells to pharmacologically relevant concentrations of ET-743 is accompanied by rapid formation of DNA double-strand breaks (DSBs), as shown by the neutral comet assay and induction of focalized phosphorylated H2AX.
View Article and Find Full Text PDFEcteinascidin 743 (ET-743) is a promising antitumoral drug for the treatment of soft tissues sarcomas, becoming a good candidate for clinical trials. However, the molecular mechanism of how ET-743 induces cells death is poorly understood. The chemical structure of ET-743 suggests that it can form cytotoxic cross-links with proteins and DNA.
View Article and Find Full Text PDF