Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects.
View Article and Find Full Text PDFThree-dimensional (3D) culture systems like tumor spheroids represent useful in vitro models for drug screening and more broadly for cancer biology research, but the generation of uniform populations of spheroids remains challenging. The possibility to properly characterize spheroid properties would increase the reliability of these models. To address this issue different analysis were combined: i) a new device and relative analytical method for the accurate, simultaneous, and rapid measurement of mass density, weight, and size of spheroids, ii) confocal imaging, and iii) protein quantification, in a clinically relevant 3D model.
View Article and Find Full Text PDFTo improve pathogenetic studies in cancer development and reliable preclinical testing of anti-cancer treatments, three-dimensional (3D) cultures, including spheroids, have been widely recognized as more physiologically relevant models of in tumor behavior. Currently, the generation of uniformly sized spheroids is still challenging: different 3D cell culture methods produce heterogeneous populations in dimensions and morphology, that may strongly influence readouts reliability correlated to tumor growth rate or antitumor natural killer (NK) cell-mediated cytotoxicity. In this context, an increasing consensus claims the integration of microfluidic technologies within 3D cell culture, as the physical characterization of tumor spheroids is unavoidably demanded to standardize protocols and assays for testing.
View Article and Find Full Text PDFAfter injury, regenerating axons must navigate complex, three-dimensional (3D) microenvironments. Topographic guidance of neurite outgrowth has been demonstrated in vitro with culture substrates that contain micropatterned features on the nanometer-micron scale. In this study we report the ability of microfabricated biomaterials to support neurite extension across micropatterned grooves with feature sizes on the order of tens of microns, sizes relevant to the design of biomaterials and tissue engineering scaffolds.
View Article and Find Full Text PDF