Agriculture has a significant environmental impact and is simultaneously called to major challenges, such as responding to the need to develop more sustainable cropping systems with higher productivity. In this context, the present study aimed to obtain lignin nanoparticles (LNs) from pomace, a waste product of the olive oil chain, to be used as a nanobiostimulant in tomato plants. The biostimulant effect of this biopolymer is known, but its reduction to nanometer size can emphasize this property.
View Article and Find Full Text PDFUsing biomass to develop and obtain environmentally friendly and industrially applicable biomaterials is increasingly attracting global interest. Herein, cellulose nanocrystals (CNCs) and lignin nanoparticles (LNPs) were extracted from L., a freshwater free-floating aquatic species commonly called duckweed.
View Article and Find Full Text PDFThe impact of duckweed extracts (DEs) on the shelf-life of packaged beef burgers was evaluated through classical assays and untargeted metabolomics. Beef burgers were formulated with an antioxidants-free control (CON), 1 g/kg sodium ascorbate (ASC), and increasing levels of a DEs, namely 1 (DE1), 5 (DE5), and 10 (DE10) g/kg, packaged under modified atmosphere and stored at 4 °C for 19 days. The DEs, abundant in phytochemicals, determined no issues with the hygienic status of the product.
View Article and Find Full Text PDFAnthropogenic activities generally consume non-renewable resources and release polluting substances into the environment. Concerning agriculture, the cropping systems are almost based on exploiting non-renewable resources. In recent years, increasing interest has been devoted to reusing agricultural, food and other biomass wastes, considered relevant as they can be seen as resources rich in compounds that can find numerous applications.
View Article and Find Full Text PDFThe present study was designed to evaluate the functional potential of common duckweed ( L.) as a source of bioactive compounds of nutraceutical interest. The untargeted profiling of the bioactive components of common duckweed was carried out through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), in parallel with assessing in vitro antioxidant and enzymatic inhibition properties.
View Article and Find Full Text PDFMetal trace elements (MTE) can damage crops if present in excessive amounts in the environment. This research investigated the effect of a plant extract of an aquatic species, L. (duckweed) (LE), on the ability of maize to cope with copper (Cu) toxicity.
View Article and Find Full Text PDFEnvironmental pollution is one of the most pressing global issues, and it requires priority attention. Environmental remediation techniques have been developed over the years and can be applied to polluted sites, but they can have limited effectiveness and high energy consumption and costs. Bioremediation techniques, on the other hand, represent a promising alternative.
View Article and Find Full Text PDFNanotechnologies are attracting attention in various scientific fields for their technological and application potential, including their use as bio-activators and nanocarriers in agriculture. This work aimed to synthesize a hybrid material (ZnO@LNP) consisting of lignin nanoparticles containing zinc oxide (4 wt %). The synthesized ZnO hybrid material showed catalytic effect toward thermal degradation, as evidenced by the TGA investigation, while both spectroscopic and contact angle measurements confirmed a modification of surface hydrophilicity for the lignin nanoparticles due to the presence of hydrophobic zinc oxide.
View Article and Find Full Text PDFThe need to increase crop productivity and resistance directs interest in nanotechnology. Indeed, biogenic metal oxide nanoparticles can promote beneficial effects in plants, while their synthesis avoids the environmental impacts of conventional synthetic procedures. In this context, this research aimed to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) using, for the first time, an extract of a wild and spontaneous aquatic species, (duckweed).
View Article and Find Full Text PDFLignin, and its derivatives, are the subject of current research for the exciting properties shown by this biomass. Particularly attractive are lignin nanoparticles for their eco- and biocompatibility compared to other nanomaterials. In this context, the effect of nanostructured lignin microparticles (LNP), obtained from alkaline lignin by acid treatment, on maize plants was investigated.
View Article and Find Full Text PDFWater pollution by excessive amounts of nitrate (NO) has become a global issue. Technologies to clean up nitrate-contaminated water bodies include phytoremediation. In this context, this research aimed to evaluate four tree species ( L.
View Article and Find Full Text PDFSalinity is one of the most impacting abiotic stresses regarding crop productivity and quality. Among the strategies that are attracting attention in the protection of crops from abiotic stresses, there is the use of plant biostimulants. In this study, Megafol (Meg), a commercial plant biostimulant, was tested on olive plants subjected to severe saline stress.
View Article and Find Full Text PDFAnthropogenic climate change, namely climate alterations induced by human activities, is causing some issues to agricultural systems for their vulnerability to extreme events. Forecasts predict a global population increase in the near years that will exacerbate this situation, elevating the global demand for food. It will pose severe concerns in terms of natural resource usage and availability.
View Article and Find Full Text PDFThis work aimed to study the effect of some light spectra on the growth, oxidative state, and stress of einkorn wheatgrass ( L. ssp. ).
View Article and Find Full Text PDFPhytoremediation is a widely studied and applied technology, based on the use of plants and their associated microorganisms to decontaminate polluted sites. In recent years, different strategies have been investigated to improve the phytoremediation efficiency of the selected plants. In this context, some studies have shown that herbicide-safeners, chemicals applied to crops to enhance their tolerance to herbicides, can increase the phytoremediation of soils and water polluted by organic and inorganic contaminants.
View Article and Find Full Text PDFPlant biostimulants (PBS) increase crop productivity and induce beneficial processes in plants. Although PBS can stimulate plant tolerance to some abiotic stresses, their effect in improving crop resistance to herbicide injuries has barely been investigated. Therefore, a study on the effect of a biostimulant (Megafol) on maize ( L.
View Article and Find Full Text PDFWater pollution is becoming alarming since thousands contaminants are dispersed in the aquatic environments, and agricultural practices, for the massive use of pesticides, are contributing to exacerbating this problem. In this context, a research aimed at investigating the ability of duckweed (Lemna minor), a free-floating aquatic species widespread throughout the world, to remediate water polluted with five different concentrations of a herbicide - terbuthylazine (TBA) - was carried out. In addition, duckweed was treated with a plant biostimulant and a safener with the aim of increasing the plant's capacity to tolerate and remove the TBA from the water.
View Article and Find Full Text PDFThe use of herbicides to control weed species could lead to environmental threats due to their persistence and accumulation in the ecosystems and cultivated fields. Nonetheless, the effect of these compounds on plant mineral nutrition in crops has been barely investigated. This study aimed at ascertaining the effect of three herbicides (S-metolachlor, metribuzin and terbuthylazine) on the capacity of maize to acquire iron (Fe).
View Article and Find Full Text PDFIn the last decades, many anthropogenic activities have resulted in heavy metal contamination of freshwaters and surrounding environments. This poses serious threats to human health. Phytoremediation is a cost-effective technology which is useful for remediating polluted soils and water.
View Article and Find Full Text PDFViticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality.
View Article and Find Full Text PDFBackground: Safeners are agrochemicals used in agriculture to protect crops from herbicide injuries. They act by stimulating herbicide metabolism. As graminaceous plants, to cope with iron (Fe) deficiency, activate sulfur (S) metabolism and release huge amounts of Fe-chelating compounds, or phytosiderophores (PSs), we investigated, in barley plants (Hordeum vulgare, L.
View Article and Find Full Text PDFThe capacity of two grasses, tall fescue (Festuca arundinacea) and orchardgrass (Dactylis glomerata), to remove terbuthylazine (TBA) from polluted solutions has been assessed in hydroponic cultures. Different TBA concentrations (0.06, 0.
View Article and Find Full Text PDFSci Total Environ
January 2016
Nitrate (NO3(-)) water pollution is one of the most prevailing and relevant ecological issues. For instance, the wide presence of this pollutant in the environment is dramatically altering the quality of superficial and underground waters. Therefore, we set up a floating bed vegetated with a terrestrial herbaceous species (Italian ryegrass) with the aim to remediate hydroponic solutions polluted with NO3(-).
View Article and Find Full Text PDFAll living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies.
View Article and Find Full Text PDF