Publications by authors named "Daniele Borin"

Background: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect.

Methods: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer.

Results: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers.

View Article and Find Full Text PDF

Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.

View Article and Find Full Text PDF

Background: Laminopathies are genetic diseases caused by mutations in the nuclear lamina.

Objective: Given the clinical impact of laminopathies, understanding mechanical properties of cells bearing lamin mutations will lead to advancement in the treatment of heart failure.

Methods: Atomic force microscopy (AFM) was used to analyze the viscoelastic behavior of neonatal rat ventricular myocyte cells expressing three human lamin A/C gene (LMNA) mutations.

View Article and Find Full Text PDF

Given the clinical effect of laminopathies, understanding lamin mechanical properties will benefit the treatment of heart failure. Here we report a mechano-dynamic study of mutations in neonatal rat ventricular myocytes (NRVM) using single cell spectroscopy with Atomic Force Microscopy (AFM) and measured changes in beating force, frequency and contractile amplitude of selected mutant-expressing cells within cell clusters. Furthermore, since beat-to-beat variations can provide clues on the origin of arrhythmias, we analyzed the beating rate variability using a time-domain method which provides a Poincaré plot.

View Article and Find Full Text PDF

Mutations in genes encoding intercalated disk/desmosome proteins, such as plakophilin 2 (PKP2), cause arrhythmogenic cardiomyopathy (ACM). Desmosomes are responsible for myocyte-myocyte attachment and maintaining mechanical integrity of the myocardium. We knocked down in HL-1 mouse atrial cardiomyocytes (HL-1) and characterized their biomechanical properties.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how certain mutations in a gene related to heart diseases affect heart cell behavior using different science techniques like AFM and 3D modeling.
  • They found that the worse the mutation, the more serious the heart problems were in patients.
  • Their study suggests that a specific treatment may help fix some of the damage caused by these mutations and could be useful in future treatments for heart issues.
View Article and Find Full Text PDF

In a tissue continuously challenged by mechanical stresses, such as the skin or the heart, cells perceive information about their microenvironment through several adhesive protein complexes and activate cell-signaling events to maintain tissue cohesion. Consequently, alteration of cell adhesion components leads to aberrant assembly of the associated cytoplasmic scaffolding and signaling pathways, which may reflect changes to the tissue physiology and mechanical resistance. Desmoplakin is an essential component of the cell-cell junction, anchoring the desmosomal protein complex to the intermediate filaments (IFs).

View Article and Find Full Text PDF

Lamins are type V intermediate filaments that collectively form a meshwork underneath the inner nuclear membrane, called nuclear lamina. Furthermore, they are also present in the nucleoplasm. Lamins are experiencing a growing interest, since a wide range of diseases are induced by mutations in the gene coding for A-type lamins, globally known as laminopathies.

View Article and Find Full Text PDF

It is widely accepted that the pathological state of cells is characterized by a modification of mechanical properties, affecting cellular shape and viscoelasticity as well as adhesion behaviour and motility. Thus, assessing these parameters could represent an interesting tool to monitor disease development and progression, but also the effects of drug treatments. Since biomechanical properties of cells are strongly related to cytoskeletal architecture, in this work we extensively studied the effects of selective impairments of actin microfilaments and microtubules on HeLa cells through force-deformation curves and stress relaxation tests with atomic force microscopy.

View Article and Find Full Text PDF

The ability of the adult heart to regenerate cardiomyocytes (CMs) lost after injury is limited, generating interest in developing efficient cell-based transplantation therapies. Rigid carbon nanotubes (CNTs) scaffolds have been used to improve CMs viability, proliferation, and maturation, but they require undesirable invasive surgeries for implantation. To overcome this limitation, we developed an injectable reverse thermal gel (RTG) functionalized with CNTs (RTG-CNT) that transitions from a solution at room temperature to a three-dimensional (3D) gel-based matrix shortly after reaching body temperature.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the number one cause of death globally, therefore interest in studying aetiology, hallmarks, progress and therapies for these disorders is constantly growing. Over the last decades, the introduction and development of atomic force microscopy (AFM) technique allowed the study of biological samples at the micro- and nanoscopic level, hence revealing noteworthy details and paving the way for investigations on physiological and pathological conditions at cellular scale. The present work is aimed to collect and review the literature on cardiomyocytes (CMs) studied by AFM, in order to emphasise the numerous potentialities of this approach and provide a platform for researchers in the field of cardiovascular diseases.

View Article and Find Full Text PDF

Micro and nanomechanical resonators represent a promising platform for proteins label-free detection because of their extreme sensitivity, fast response and low cost. Micro-pillars are columnar resonators that can be easily arranged in dense arrays of several thousand sensors in a squared mm. To exploit such a large density, however, a method for tracking independently micropillars resonance frequency is required.

View Article and Find Full Text PDF