Publications by authors named "Daniele Bibbo"

This article presents an overview of existing approaches to perform vectorcardiographic (VCG) diagnostics of ischemic heart disease (IHD). Individual methodologies are divided into categories to create a comprehensive and clear overview of electrical cardiac activity measurement, signal pre-processing, features extraction and classification procedures. An emphasis is placed on methods describing the electrical heart space (EHS) by several features extraction techniques based on spatiotemporal characteristics or signal modelling and signal transformations.

View Article and Find Full Text PDF

This article presents a systematic review aimed at mapping the literature published in the last decade on the use of machine learning (ML) for clinical decision-making through wearable inertial sensors. The review aims to analyze the trends, perspectives, strengths, and limitations of current literature in integrating ML and inertial measurements for clinical applications. The review process involved defining four research questions and applying four relevance assessment indicators to filter the search results, providing insights into the pathologies studied, technologies and setups used, data processing schemes, ML techniques applied, and their clinical impact.

View Article and Find Full Text PDF

Introduction: Human robot collaboration is quickly gaining importance in the robotics and ergonomics fields due to its ability to reduce biomechanical risk on the human operator while increasing task efficiency. The performance of the collaboration is typically managed by the introduction of complex algorithms in the robot control schemes to ensure optimality of its behavior; however, a set of tools for characterizing the response of the human operator to the movement of the robot has yet to be developed.

Methods: Trunk acceleration was measured and used to define descriptive metrics during various human robot collaboration strategies.

View Article and Find Full Text PDF

the work has been aimed to create an overview of available and used methods and ways to determine the concentration of glucose in body fluids, especially from a technical point of view. It also provides an overview of the clinical features of these methods. The survey found that today's market offers a large number of options and approaches to the issue.

View Article and Find Full Text PDF

In this paper, a new approach for the periodical testing and the functionality evaluation of a fetal heart rate monitor device based on ultrasound principle is proposed. The design and realization of the device are presented, together with the description of its features and functioning tests. In the designed device, a relay element, driven by an electric signal that allows switching at two specific frequencies, is used to simulate the fetus and the mother's heartbeat.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy is an X-linked muscle disease caused by dystrophin absence. Muscle weakness is a major determinant of the gait impairments in patients with Duchenne muscular dystrophy and it affects lower limbs more often than upper limbs. Monitoring progression of motor symptoms is key to plan treatments for prolonging ambulation.

View Article and Find Full Text PDF

12 young adults were requested to walk along a circuitous path including turns, slaloms, stair ascending and descending, while wearing an inertial sensor placed on the back at the lumbar level. The path was completed under two conditions: with no additive cognitive task, and while performing a cognitive task and texting on a smartphone. Different temporal global parameters of gait were extracted from the inertial sensor data, to check for differences driven by the presence of the cognitive task.

View Article and Find Full Text PDF

This paper presents a newly-designed and realized Invasive Blood Pressure (IBP) device for the simulation on patient's monitors. This device shows improvements and presents extended features with respect to a first prototype presented by the authors and similar systems available in the state-of-the-art. A peculiarity of the presented device is that all implemented features can be customized from the developer and from the point of view of the end user.

View Article and Find Full Text PDF

An office chair for analyzing the seated posture variation during the performance of a stress-level test is presented in this work. To meet this aim, we placed a set of textile pressure sensors both on the backrest and on the seat of the chair. The position of the sensors was selected for maximizing the detection of variations of user's posture.

View Article and Find Full Text PDF

This work analyzes the results of measurements on thermal energy harvesting through a wearable Thermo-electric Generator (TEG) placed on the arms and legs. Four large skin areas were chosen as locations for the placement of the TEGs. In order to place the generator on the body, a special manufactured band guaranteed the proper contact between the skin and TEG.

View Article and Find Full Text PDF

In this paper, two different piezoelectric transducers-a ceramic piezoelectric, lead zirconate titanate (PZT), and a polymeric piezoelectric, polyvinylidene fluoride (PVDF)-were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initial testing was performed by placing the transducers on the neck, shoulder, elbow, wrist, hip, knee and ankle; then, five locomotion activities-walking, walking up and down stairs, jogging and running-were chosen for the tests.

View Article and Find Full Text PDF

Inertial sensors are increasingly being used to recognize and classify physical activities in a variety of applications. For monitoring and fitness applications, it is crucial to develop methods able to segment each activity cycle, e.g.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effect of a continuous and a discretized Visual Biofeedback (VBF) on balance performance in upright stance. The coordinates of the Centre of Pressure (CoP), extracted from a force plate, were processed in real-time to implement the two VBFs, administered to two groups of 12 healthy participants. In the first group, a representation of the CoP was continuously shown, while in the second group, the discretized VBF was provided at an irregular frequency (that depended on the subject's performance) by displaying one out of a set of five different emoticons, each corresponding to a specific area covered by the current position of the CoP.

View Article and Find Full Text PDF

Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered.

View Article and Find Full Text PDF

In a laboratory setting where both a mechanically-braked cycling ergometer and a motion analysis (MA) system are available, flywheel angular displacement can be estimated by using MA. The purpose of this investigation was to assess the validity and reliability of a MA method for measuring maximal power output (Pmax) in comparison with a force transducer (FT) method. Eight males and eight females undertook three identical sessions, separated by 4 to 6 days; the first being a familiarization session.

View Article and Find Full Text PDF

Two approaches to the classification of different locomotor activities performed at various speeds are here presented and evaluated: a maximum a posteriori (MAP) Bayes' classification scheme and a Support Vector Machine (SVM) are applied on a 2D projection of 16 features extracted from accelerometer data. The locomotor activities (level walking, stair climbing, and stair descending) were recorded by an inertial sensor placed on the shank (preferred leg), performed in a natural indoor-outdoor scenario by 10 healthy young adults (age 25-35 yrs.).

View Article and Find Full Text PDF

The aim of this study was to investigate the muscle coordination underlying pedaling in untrained subjects by using the muscle synergies paradigm, and to connect it with the inter-individual variability of EMG patterns and applied forces. Nine subjects performed a pedaling exercise on a cycle-simulator. Applied forces were recorded by means of instrumented pedals able to measure two force components.

View Article and Find Full Text PDF

Finding an optimum for the cycling performance is not a trivial matter, since the literature shows the presence of many controversial aspects. In order to quantify different levels of performance, several indexes have been defined and used in many studies, reflecting variations in physiological and biomechanical factors. In particular, indexes such as Gross Efficiency (GE), Net Efficiency (NE) and Delta Efficiency (DE) have been referred to changes in metabolic efficiency (EffMet), while the Indexes of Effectiveness (IE), defined over the complete crank revolution or over part of it, have been referred to variations in mechanical effectiveness (EffMech).

View Article and Find Full Text PDF

Recent studies have reported evidence that the motor system may rely on a modular organization, even if this behavior has yet to be confirmed during motor adaptation. The aim of the present study is to investigate the modular motor control mechanisms underlying the execution of pedaling by untrained subjects in different biomechanical conditions. We use the muscle synergies framework to characterize the muscle coordination of 11 subjects pedaling under two different conditions.

View Article and Find Full Text PDF

The aim of the central nervous system in upright stance is to control an intrinsically unstable plant. Internal disturbances, such as haemodynamics and respiration, constitute an endogenous threat to equilibrium. The way CNS reacts to those perturbations was studied in this work, through the analysis of summary scores taken from posturographic and pneumographic data.

View Article and Find Full Text PDF