Publications by authors named "Daniele Baccega"

Predicting epidemic evolution is essential for making informed decisions and guiding the implementation of necessary countermeasures. Computational models are vital tools that provide insights into illness progression and enable early detection, proactive intervention, and targeted preventive measures. This paper introduces Sybil, a framework that integrates machine learning and variant-aware compartmental models, leveraging a fusion of data-centric and analytic methodologies.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) has shown promise in the early detection of various cardiac conditions from a standard 12-lead electrocardiogram (ECG). However, the ability of AI to identify abnormalities from single-lead recordings across a range of pathological conditions remains to be systematically investigated. This study aims to assess the performance of a convolutional neural network (CNN) using a single-lead (D1) rather than a standard 12-lead setup for accurate identification of ECG abnormalities.

View Article and Find Full Text PDF