Publications by authors named "Daniele Angelozzi"

To further elucidate the biosynthesis of lipids in flor strains under fermentative conditions, the transcription levels of the lipid biosynthetic genes ACS1, ACS2, ACC1, OLE1, ERG1, ERG11, ARE1 and ARE2, as well as the lipid composition and cell viability of a flor strain were compared with that of a non-flor strain during hypoxic and aerobic fermentations in the absence of lipid nutrients. While no significant differences in transcription levels or lipid compositions were observed between the two strains when oxygen was not limiting, significant differences were seen during hypoxic fermentation. In this last condition, the flor strain, in spite of higher levels of transcription of hypoxic genes, lost the abilities to desaturate fatty acids and complete ergosterol biosynthesis, and showed a dramatic loss of viability.

View Article and Find Full Text PDF

To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

During must fermentation wine strains are exposed to a variety of biotic and abiotic stresses which, when prevailing over the cellular defence systems, can affect cell viability with negative consequences on the progression of the fermentative process. To investigate the ability of wine strains to survive and adapt to unfavourable conditions of fermentation, the lipid composition, membrane integrity, cell viability and fermentative activity of three strains of Saccharomyces cerevisiae were analysed during hypoxic growth in a sugar-rich medium lacking lipid nutrients. These are stressful conditions, not unusual during must fermentation, which, by affecting lipid biosynthesis may exert a negative effect on yeast viability.

View Article and Find Full Text PDF

With the aim of developing new tools for the characterisation of wine yeasts, by means of databases available on-line we scanned the genome of Saccharomyces cerevisiae in search of potentially polymorphic targets. As we have previously observed for SED1, we found that other genes coding for cell wall proteins contain minisatellite-like sequences. A polymerase chain reaction (PCR) survey of SED1 and three of these others, namely AGA1, DAN4 and HSP150, in a population of wild S.

View Article and Find Full Text PDF