GT-00AxIL15 is a novel interleukin-15-based immunocytokine targeting a tumor-specific, glycosylated epitope of MUC1 (TA-MUC1). We characterized mode of action, pharmacokinetic (PK) and pharmacodynamic (PD) properties and investigated the relevance of TA-MUC1 binding for the concept of delivering IL-15 to solid tumors. In vitro pharmacology was analyzed in binding and cell-based assays.
View Article and Find Full Text PDFRecombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES.
View Article and Find Full Text PDFIn terms of body size, species of the genus Stål, 1859, are the largest known representatives of the subfamily Reduviinae. Among the species belonging to this genus, (Stål, 1865) is the most popular, mainly because it is a laboratory breeding species. Individuals of this species were bred in the laboratory of the Zoology Team at the University of Silesia in Katowice, Poland.
View Article and Find Full Text PDFAntibodies to carbohydrate epitopes are often of the IgM isotype and require multiple binding for sufficient avidity. Therefore clusters of epitopes are preferred antigenic sites in these cases. We have examined the type of clusters recognized by two anti-Thomsen-Friedenreich (TF, core-1, CD176) IgM antibodies, NM-TF1 and NM-TF2, using several different sets of TF-carrying synthetic glycoconjugates in ELISA experiments.
View Article and Find Full Text PDFThe programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis plays a central role in suppression of anti-tumor immunity. Blocking the axis by targeting PD-L1 with monoclonal antibodies is an effective and already clinically approved approach to treat cancer patients. Glyco-engineering technology can be used to optimize different properties of monoclonal antibodies, for example, binding to FcγRs.
View Article and Find Full Text PDFPurpose: TrasGEX is a second-generation monoclonal antibody of trastuzumab, glyco-optimised to enhance antibody-dependent cellular cytotoxicity while fully retaining trastuzumab's antigen-binding properties to human epidermal growth factor receptor 2 (HER2). A phase I dose-escalation study was conducted to establish the optimal TrasGEX dose and regimen for phase II studies and to define the safety, pharmacokinetics (PK) and preliminary antitumour activity of TrasGEX.
Patients And Methods: A total of 37 patients with advanced HER2-positive carcinomas and progressive disease received TrasGEX intravenously every 3 weeks until disease progression in doses of 12-720 mg in a three-plus-three dose escalation design, including an expansion cohort at the highest dose.
Background: Changes in glycosylation of the constant domain (Fc) of monoclonal antibodies (mAbs) enhance antibody-dependent cell-mediated cytotoxicity independently of downstream effects following receptor blockade by the antibody, thus extending their indication. We investigated the safety, pharmacokinetics, pharmacodynamics and antitumour activity of tomuzotuximab, an IgG1 glycoengineered mAb against the epidermal growth factor receptor with enhanced tumour cytotoxicity in a phase I dose-escalation study (NTC01222637).
Patients And Methods: Forty-one patients with advanced solid tumours refractory to standard therapies received tomuzotuximab weekly (12-1370 mg) or two-weekly (990 mg) on a three-plus-three dose escalation design.
Bioengineering (Basel)
May 2017
IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five -glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies.
View Article and Find Full Text PDFHead and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation.
View Article and Find Full Text PDFHisto-blood group antigens are important markers of developmental stages and as such also often of tumours. Generation of antibodies towards these carbohydrate structures is still a challenging task as they may lack specificity, affinity or are only of the IgM class. We have examined four own antibodies to Lewis Y/H type 2 for their fine specificities using a large panel of mono- and oligosaccharides.
View Article and Find Full Text PDFAntibodies to either peptide or carbohydrate tumour antigens are established tools for diagnostics and therapy. We here describe an antibody (A70-A/A9) recognizing a carbohydrate epitope common to the tumour-associated Lewis Y and Lewis b antigens (Fucalpha1-2Galbeta1-4/3[Fucalpha1-3/4]GlcNAcbeta-). Its specificity was established without doubt with a panel of 86 synthetic mono- and oligosaccharidic structures.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2007
The Thomsen-Friedenreich disaccharide (TF(alpha)) is a promising antigen for tumor immunotargeting, since it is almost exclusively expressed on carcinoma tissues. So far, an obstacle preventing the exploitation of TF for immunotargeting has been the lack of suitable (non-IgM) antibodies with high affinity and specificity. Recently we reported on a novel strategy for generating antibodies toward small uncharged carbohydrates and the generation of recombinant antibodies toward TF.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2006
Recently, we described a new carbohydrate-induced conformational tumour-epitope on mucin-1 (MUC1) with the potential for improvement of immunotherapies [29, 30]. PankoMab is a novel antibody, which binds specifically to this epitope and was designed to show the highest glycosylation dependency and the strongest additive binding effect when compared to other MUC1 antibodies. This enables PankoMab to differentiate between tumour MUC1 and non-tumour MUC1 epitopes.
View Article and Find Full Text PDFThe Thomsen-Friedenreich disaccharide (TF) is a promising target antigen for tumor immunotherapy, since it is almost exclusively expressed in carcinoma tissues. The TF-specific antibodies generated so far are IgMs of mouse origin with limited therapeutic potential. Phage-displayed scFv repertoires are an established source for recombinant antibodies; however, we were unable to identify scFvs binding to TF when applying libraries in the standard monovalent display format of phagemid systems.
View Article and Find Full Text PDFProducing monoclonal antibodies includes their efficient and simple purification. Growing hybridoma cells in media containing Prolifix, an alternative plant-based substitute for serum, provides supernatants containing large amounts of antibodies and defined low molecular weight additives. Antibodies can easily be separated from these compounds by fast ultrafiltration.
View Article and Find Full Text PDFGlycosylation determines essential biological functions of epithelial mucins in health and disease. We report on the influence of glycosylation of the immunodominant DTR motif of MUC1 on its antigenicity. Sets of novel glycopeptides were synthesized that enabled us to examine sole and combined effects of peptide length (number of repeats) and O-glycosylation with GalNAc at the DTR motif on the binding patterns of 22 monoclonal antibodies recognizing this motif.
View Article and Find Full Text PDFThe formyl peptide receptor (FPR), a heptahelical G protein-coupled receptor on phagocytic leukocytes, can be triggered by bacterially derived oligopeptides of the prototype fMLP. Although FPR expression and activation have been associated with cells of myeloid origin and bacterial inflammation, the receptor has recently been identified in nonmyeloid cells, thus suggesting additional physiological functions and the existence of an endogenous agonist. In this study, we demonstrate the presence and functional activation of the FPR in the human lung cell line A549, which represents an extrahepatic model for the regulation of acute-phase proteins.
View Article and Find Full Text PDF