Med Oncol
April 2024
Gene
July 2024
Hematol Transfus Cell Ther
September 2021
Nucleotide excision repair pathway (NER) is an essential mechanism for single-strand breaks (SSB) repair while xeroderma pigmentosum family (XPA to XPG) is the most important system to NER. Myelodysplastic syndrome (MDS) is a heterogeneous hematological cancer characterized by cytopenias and risk of acute myeloid leukemia (AML) transformation. MDS pathogenesis has been associated with problems of DNA repair system.
View Article and Find Full Text PDFBackground: Glycogen Synthase Kinase-3 beta (GSK-3β) regulates diverse cell functions including metabolic activity, signaling and structural proteins. GSK-3β phosphorylates target pro-oncogenes and regulates programmed cell death-ligand 1 (PD-L1). This study investigated the correlation between GSK-3β expression and clinically relevant molecular features of lung adenocarcinoma (PDL1 score, PTEN expression and driver mutations).
View Article and Find Full Text PDFToll-like receptors are mutated or overexpressed in up to 50% of patients with myelodysplastic syndrome (MDS). Endogenous retroviruses (ERV) trigger TLR3 leading to interferon regulatory genes (IRFs) activation. We evaluated if the ERVs-TLR3-IRF axis activation would be linked to MDS pathogenesis and we also conducted a detailed cancer analysis of the ERVs, TLR3 and IRFs gene expression in 30 cancer types using GEPIA database.
View Article and Find Full Text PDFExposure to pesticides is considered a major factor underlying increased risk of hematological disorders in agricultural workers due to its carcinogenic potential. However, genotoxic impact of pesticides in DNA integrity of bone marrow stem cells (BMSC) of farmers exposed is not yet well known. We evaluated presence of chromosomal abnormalities (CA) and mRNA expression of DNA repair targets (ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6, LIG4, CSA, CSB, XPA, XPC, XPG) in 90 bone marrow samples of farmers divided into three groups: commercial farming (CF), family farming (FF) and organic farming (OF).
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by dysplasias, ineffective hematopoiesis and risk of acute myeloid leukemia transformation. Approximately 90% of MDS patients present mutations in genes involved in various cell signaling pathways. Specialized DNA polymerases, such as POLN, POLI, POLK, POLQ, POLH, POLL and REV3L, insert a nucleotide opposite replication-blocking DNA lesions in an error-prone manner and, in this way, sometimes can actively promote the generation of mutation.
View Article and Find Full Text PDFCancer-specific defects in DNA repair pathways create the opportunity to employ synthetic lethality approach. Recently, GEMA (gene expression and mutation analysis) approach detected insufficient expression of BRCA or NHEJ (non-homologous end joining) to predict PARP inhibitors response. We evaluated a possible role of DNA repair pathways using gene expression of single-strand break (XPA, XPC, XPG/ERCC5, CSA/ERCC8, and CSB/ERCC6) and double-strand break (ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6, LIG4) in 92 patients with myelodysplastic syndrome (73 de novo, 9 therapy-related (t-MDS).
View Article and Find Full Text PDFHematol Transfus Cell Ther
July 2018
Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology.
View Article and Find Full Text PDFPLoS One
October 2017
Background/objectives: The ageing process is associated with gradual decline in respiratory system performance. Anemia is highly prevalent among older adults and usually associated with adverse outcomes. Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic malignancies with increasing incidence with age and characterized by anemia and other cytopenias.
View Article and Find Full Text PDFThe pathogenesis of myelodysplastic syndromes (MDS) is complex and depends on the interaction between aberrant hematopoietic cells and their microenvironment, probably including aberrations in cytokines and their signaling pathways. To evaluate interleukin-8 (IL-8) plasma levels and nuclear factor kappa B (NF-kB) in patients with MDS and to test possible correlation between IL-8 and NF-Kb, a total of 45 individuals were analyzed: 25 consecutive adult de novo MDS patients and 20 sex and age-matched healthy elderly volunteers. IL-8 analysis was performed by ELISA and activity of NF-kB by chemiluminescent assay.
View Article and Find Full Text PDFObjective: To evaluate the expression of genes related to nuclear excision (, and ), homologous recombination and non-homologous end-joining (, , and ) repair mechanisms, using quantitative PCR methodologies, and it relation with bone marrow cellularity in myelodysplastic syndrome (MDS).
Methods And Results: A total of 51 adult de novo patients with MDS (3 refractory anaemia (RA), 11 refractory anaemia with ringed sideroblasts (RARS), 28 refractory cytopenia with multilineage dysplasia (RCMD), 3 refractory anaemia with excess blasts type I (RAEB-I), 5 refractory anaemia with excess blasts type II (RAEB-II), and 1 chronic myelomonocytic leukaemia (CMML) were evaluated. For karyotype, 16.
The association between Xeroderma Pigmentosum DNA repair genes (XPA rs1800975, XPC rs2228000, XPD rs1799793 and XPF rs1800067) polymorphisms and myelodysplastic syndrome (MDS) have not been reported. To assess the functional role between these polymorphisms and MDS, we evaluated 189 samples stratified in two groups: 95 bone marrow samples from MDS patients and 94 from healthy elderly volunteers used as controls. Genotypes for all polymorphisms were identified in DNA samples in an allelic discrimination experiment by real-time polymerase chain reaction (qPCR).
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell (HSC) malignances characterized by peripheral cytopenias and predisposition to acute myeloid leukemia transformation. Several studies show that the MDS pathogenesis is a complex and heterogeneous process that involves multiple steps through a sequence of genetic lesions in the DNA which lead to functional changes in the cell and the emergence and subsequent evolution of pre-malignant clone. Double strand breaks (DSB) lesions are the most severe type of DNA damage in HSCs, which, if not properly repaired, might contribute to the development of chromosomal abnormalities, which in turn may lead to leukemia development.
View Article and Find Full Text PDF