Reactions with ozone transform organic and inorganic molecules in water treatment systems as well as in atmospheric chemistry, either in the aqueous phase, at gas/particle interfaces, or in the gas phase. Computed thermokinetic data can be used to estimate the reactivities of molecules toward ozone in cases where no experimental data are available. Although the gas-phase reactivity of olefins with ozone has been characterized extensively in the literature, this is not the case for the richer chemistry of ozone with polar molecules, which occurs in the aqueous phase or in microhydrated environments.
View Article and Find Full Text PDFThe formation and further reactions of halamines during oxidative water treatment can be relevant for water quality. In this study, we investigated the formation and reactivity of several inorganic and organic halamines (monochloramine, N-chloromethylamine, N-chlorodimethylamine, monobromamine, dibromamine, N-bromomethylamine, N,N-dibromomethylamine, and N-bromodimethylamine) by kinetic experiments, transformation product analysis, and quantum chemical computations. Kinetic model simulations were conducted to evaluate the relevance of halamines for various water treatment scenarios.
View Article and Find Full Text PDFEnviron Sci Technol
January 2017
The stabilities and speciation of the halamines in water are difficult to characterize experimentally. We provide theoretical estimates of aqueous standard free energies of formation for inorganic chloramines, bromamines, and bromochloramines, based on high-accuracy theoretical standard free energies of formation in gas phase combined with quantum chemical estimates of Henry's law constant. Based on comparisons between several theoretical and experimental datasets, we assign an error of 1.
View Article and Find Full Text PDFCorrection for 'Benchmark thermochemistry of chloramines, bromamines, and bromochloramines: halogen oxidants stabilized by electron correlation' by Daniela Trogolo et al., Phys. Chem.
View Article and Find Full Text PDFDuring ozonation of drinking water, the fungicide metabolite N,N-dimethylsulfamide (DMS) can be transformed into a highly toxic product, N-nitrosodimethylamine (NDMA). We used quantum chemical computations and stopped-flow experiments to evaluate a chemical mechanism proposed previously to describe this transformation. Stopped-flow experiments indicate a pK(a) = 10.
View Article and Find Full Text PDFChloramines, bromamines, and bromochloramines are halogen-containing oxidants that arise from the reaction of hypohalous acids with ammonia in water. Although relevant to both water disinfection chemistry and biochemistry, these molecules are difficult to study in the laboratory, and their thermochemical properties remain poorly established. We developed a benchmark level ab initio calculation protocol, termed TA14, adapted from the Weizmann theory and Feller-Peterson-Dixon approaches to determine the molecular structures and thermochemical properties of these compounds.
View Article and Find Full Text PDFCombustive formation of a first carbon ring is an important step in the growth of polycyclic aromatic hydrocarbons (PAHs) and soot platelets. Propargyl radical addition to but-1-ene-3-yne (vinylacetylene) can start this process, possibly forming 5-, 6-, and 7-membered rings. A variety of partially intertwined reaction pathways results from density functional theory (DFT), which indicates three C7H7 radicals, benzyl, tropyl, and vinylcyclopentadienyl, as particularly stable.
View Article and Find Full Text PDF