Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion.
View Article and Find Full Text PDFDemyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage.
View Article and Find Full Text PDFAstrocytes greatly participate to inflammatory and neurotoxic reactions occurring in neurodegenerative diseases and are valuable pharmacological targets to support neuroprotection. Here we used human astrocytes generated from reprogrammed fibroblasts as a cellular model to study the effect of the compound Laquinimod and its active metabolite de-Laquinimod on astrocyte functions and the astrocyte-neuron interaction. We show that human iAstrocytes expressed the receptor for the inflammatory mediator IL1 and responded to it via nuclear translocation of NFκB, an event that did not occur if cells were treated with Laquinimod, indicating a direct anti-inflammatory activity of the drug on the human astrocyte.
View Article and Find Full Text PDFObjective: Aim of this work was the synthesis of a methacrylic hyaluronic acid (HA) derivative and the production, via photocrosslinking, of related hydrogels loaded with an endopeptidase intended for a potential oral treatment of celiac disease.
Methods: The methacrylic derivative of HA was prepared through a one-pot procedure involving the reaction with ethylenediamine (EDA) and methacrylic anhydride (MA). The obtained derivative, named HA-EDA-MA, was used to prepare photocrosslinked hydrogels loaded with a prolyl endopeptidase derived from Flavobacterium meningosepticum (PEP FM) able to detoxify gliadin.
High-mobility group box 1 (HMGB1) is a nonhistone protein secreted by airway epithelial cells in hyperinflammatory diseases such as asthma. In order to down-regulate HMGB1 expression in airway epithelial cells, siRNA directed against HMGB1 was delivered through nanocomplexes based on a cationic copolymer of poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) by using H441 cells. Two copolymers were used in these experiments bearing respectively spermine side chains (PHEA-Spm) and both spermine and PEG2000 chains (PHEA-PEG-Spm).
View Article and Find Full Text PDFIn this work we wish to report on the covalent functionalization of polylactide (PLA) surfaces by photoradical thiol-yne to yield antibacterial surfaces. At first, hydrophilic and hydrophobic thiol fluorescent probes are synthesized and used to study and optimize the conditions of ligation on alkyne-PLA surfaces. In a second part, a new antibacterial polyaspartamide copolymer is covalently grafted.
View Article and Find Full Text PDFAxonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211- and, possibly, neuregulin 1 (Nrg1)-derived signals.
View Article and Find Full Text PDFNovel amphiphilic copolymers have been synthesized based on a biocompatible poly(hydroxyethylaspartamide) (PHEA) backbone, bearing both anchoring groups for gold nanoparticles, such as thiols and disulfide, and conjugable moieties, such as amino groups, the latter as points suitable for appending further functional agents. The strategy was to functionalize α,β-poly[(N-2-hydroxyethyl)-D,L-aspartamide] (PHEA) with PEG2000-NH2 and with ethylenediamine (EDA) obtaining a partially pegylated copolymer with a large number of pendant primary amino groups. A fraction of the latter was conjugated with molecules bearing terminal thiol moieties such as 12-mercaptododecanoic acid (MDA) and disulfide groups such as lipoic acid (LA), obtaining the two amphiphilic derivatives PHEA-PEG2000-EDA-MDA (PPE-MDA) and PHEA-PEG2000-EDA-LA (PPE-LA), which also proved intrinsically able to self-assemble in polymeric micelles.
View Article and Find Full Text PDFPolymeric micelles potentially able to carry to hepatocytes a ribavirin (RBV) prodrug, exploiting the presence of carbohydrate receptors, that is, ASGPR, were prepared starting from a galactosylated polylactide-polyaminoacid conjugate. This latter was obtained by chemical reaction of α,β-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-dl-aspartamide (PHEA-EDA) with polylactic acid (PLA), and subsequent reaction with lactose, obtaining PHEA-EDA-PLA-GAL copolymer. To enhance the entrapment into obtained nanostructures, a hydrophobic RBV prodrug, that is, RBV tripalmitate, was synthesized and its capability to release RBV in the presence of an adequate enzymatic activity was demonstrated.
View Article and Find Full Text PDFAnimal models provide an important tool to investigate the pathogenesis of neuromuscular disorders. In the present study, we analyze fiber composition of the brachial plexus branches to the pectoral muscles: the medial anterior thoracic nerve (MATN) and the lateral anterior thoracic nerve (LATN). The morphological and morphometric characteristics and the percentage of motor fibers within each nerve are here reported, adding information to microscopic anatomy knowledge of the rat brachial plexus.
View Article and Find Full Text PDFNew fluorinated amphiphilic copolymers based on a biocompatible polyaspartamide have been prepared in order to obtain polymeric micelles useful for delivering anticancer drugs. In particular, α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) has been derivatized with polyethylene glycol (PEG(2000)) and ethylendiamine (EDA). Both these portions form the hydrophilic part of the copolymer, while the hydrophobic moiety is given by 1,2,4-oxadiazoles: 5-pentafluorophenyl-3-perfluoroheptyl-1,2,4-oxadiazole (PPOX) or 3-carboxyethyl-5-pentadecafluoroheptyl-1,2,4-oxadiazole (CPOX).
View Article and Find Full Text PDFThe ability of a hydrogel obtained by crosslinking INUDV and PEGBa to facilitate sustained release of flutamide is examined. The hydrogel is prepared in pH = 7.4 PBS and no toxic solvents or catalysts are used.
View Article and Find Full Text PDFMyelination is a complex process that requires coordinated Schwann cell-axon interactions during development and regeneration. Positive and negative regulators of myelination have been recently described, and can belong either to Schwann cells or neurons. Vimentin is a fibrous component present in both Schwann cell and neuron cytoskeleton, the expression of which is timely and spatially regulated during development and regeneration.
View Article and Find Full Text PDFThe study investigates if alpha-lipoic acid is neuroprotective against chemotherapy induced neurotoxicity, if mitochondrial damage plays a critical role in toxic neurodegenerative cascade, and if neuroprotective effects of alpha-lipoic acid depend on mitochondria protection. We used an in vitro model of chemotherapy induced peripheral neuropathy that closely mimic the in vivo condition by exposing primary cultures of dorsal root ganglion (DRG) sensory neurons to paclitaxel and cisplatin, two widely used and highly effective chemotherapeutic drugs. This approach allowed investigating the efficacy of alpha-lipoic acid in preventing axonal damage and apoptosis and the function and ultrastructural morphology of mitochondria after exposure to toxic agents and alpha-lipoic acid.
View Article and Find Full Text PDFAxonal loss causes disabling and permanent deficits in many peripheral neuropathies, and may result from inefficient nerve regeneration due to a defective relationship between Schwann cells, axons and the extracellular matrix. These interactions are mediated by surface receptors and transduced by cytoskeletal molecules. We investigated whether peripheral nerve regeneration is perturbed in mice that lack glial fibrillary acidic protein (GFAP), a Schwann-cell-specific cytoskeleton constituent upregulated after damage.
View Article and Find Full Text PDF